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Cupertino Miranda, Antoniu Pop, Marc Pouzet

PARKAS Team
INRIA and ENS Paris

Lyon, July 1st, 2013

Funded by: TERAFLUX & PHARAON FP7, and ManycoreLabs “investissements d’avenir” grants

1 / 77



1. Stream Processing?

Stream Processing?

Driving Force: Correct Concurrency by Construction

The Hammer: Language Design

The Anvil: Runtime System Design

Wrap-Up
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Stream Processing?

“A model that uses sequences of data and computation kernels to expose
and exploit concurrency and locality for efficiency
[of execution and programmability].”

Two Workshops on Streaming Systems

WSS03: http://groups.csail.mit.edu/cag/wss03

WSS08: http://people.csail.mit.edu/rabbah/

conferences/08/micro/wss
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Stream Processing – In This Talk

Application domains

1. High-productivity computing systems

2. Efficient runtimes, task-level pipelines

3. Embedded control, safety-critical, certified systems

Some influential languages

I Block-diagram: StateCharts, Scade, Simulink, LabVIEW

I Synchronous: Lustre, Esterel, Signal

I Data-flow: Lucid, Linda, SISAL, pH, SAC, CnC

I Kahn network APIs: YAPI, CAL

I Cyclo-static data flow: StreamIt, SigmaC
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Stream Processing – Missing Something?

Bill Dally’s streaming processors

I Bulk-Synchronous Parallelism? Vector processing pipelines?

I Brook, Cg? CUDA, OpenCL?

3-phase, “hardware-centric” decoupling: load→compute→store

I Special case of Kahn networks

I Implicitely relies on chaining/fusion to save on memory transfers
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Foundations: Kahn Process Networks

Kahn networks, 1974
Gilles Kahn (1946–2006)

Denotational: least fixpoint of a system of equations over continuous
functions, for the Scott topology lifted to unbounded streams

s v s′ =⇒ f(s) v f(s′) + lifted to the limit

Operational: communicating processes over unbounded FIFOs with blocking
reads

→ Deterministic by design
→ General recursion (dynamic process creation), parallel composition,

reactive systems
→ Distribute and decouple computations from communications
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2. Driving Force: Correct Concurrency by Construction

Stream Processing?

Driving Force: Correct Concurrency by Construction

The Hammer: Language Design

The Anvil: Runtime System Design

Wrap-Up
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Challenges

HPC Between the hammer of programmability
and the anvil of performance

Embedded Program, test, verify, simulate, compile a single source
code, serving as

I an abstract model for static analysis
I a concrete model for simulation
I the actual implementation from which

sequential/parallel code can be generated
I Ensure strong properties of safety/efficiency at

compile-time

Both Rely on efficient, proven runtime execution primitives

I lightweight scheduling
I ring buffers
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Questions

B What are the semantic requirements for source programs?

B Should programmers care
About parallelism?
About the memory and power walls?

B Which programmers?

B What role for the software stack?
Compilers
Runtime systems
Libraries, library generators
Auto-tuning, dynamic optimization
Operating system, virtual machine monitor
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3. The Hammer: Language Design

Stream Processing?

Driving Force: Correct Concurrency by Construction

The Hammer: Language Design
OpenStream: dealing with the Von Neumann bottlenecks
Heptagon: safety-critical embedded systems

The Anvil: Runtime System Design

Wrap-Up
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OpenStream

OpenMP extension

I leverage existing toolchains and
knowledge

I maximize productivity

OpenMP

Task par-
allelism

No
depen-
dences

Explicit
synchro-
nization

Data par-
allelism

DOALLCommon
patterns
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OpenStream Introductory Example

for (i = 0; i < N; ++i) {

#pragma omp task firstprivate (i) output (x) // T1

x = foo (i);

#pragma omp task input (x) // T2

print (x);

}

Control program sequentially creates N instances of T1 and of T2

Firstprivate clause privatizes variable i with initialization at task creation

Output clause gives write access to stream x

Input clause gives read access to stream x

Stream x has FIFO semantics
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Stream FIFO Semantics
#pragma omp task output (x) // Task T1

x = ...;

for (i = 0; i < N; ++i) {

int window_a[2], window_b[2];

#pragma omp task output (x << window_a[2]) // Task T2

window_a[0] = ...; window_a[1] = ...;

if (i % 2) {

#pragma omp task input (x >> window_b[2]) // Task T3

use (window_b[0], window_b[1]);

}

#pragma omp task input (x) // Task T4

use (x);

}

T1

T2

T3

T4

Stream "x"

Interleaving of stream accesses
T1 T2

T3 T4

Stream "x"

producers

consumers
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Control-Driven Data Flow

Define the formal semantics of imperative programming languages with
dynamic, dependent task creation

I control flow: dynamic construction of task graphs

I data flow: decoupling dependent computations (Kahn)
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CDDF model

I Control program
I imperative program
I creates tasks
I model: execution graph of activation points, each generating a task

activation

I Tasks
I imperative program with a dynamic stream access signature
I becomes executable once its dependences are satisfied
I recursively becomes the control program for tasks created within

I work in progress
I link with synchronous languages

I model: task activation defined as a set of stream accesses

I Streams
I Kahn-style unbounded, indexed channels
I multiple producers and/or consumers
I specify dependences and/or communication
I model: indexed set of memory locations, defined on a finite subset
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Control-Driven Data Flow – Results
I Deadlock classification

I insufficiency deadlock: missing producer before a barrier or control
program termination

I functional deadlock: dependence cycle
I spurious deadlock: deadlock induced by CDDF semantics on

dependence enforcement (Kahn prefixes)

I Conditions on program state allowing to prove
I deadlock freedom
I compile-time serializability
I functional and deadlock determinism

Condition on state Deadlock Freedom properties Serializability Determinism

σ = (ke,Ae,Ao) ¬D(σ) ¬ID(σ) ¬FD(σ) ¬SD(σ) Dyn. order CP order Funcal &
∨ID(σ) Deadlock

TC(σ) ∧ ∀s,¬MPMC(s)
no no yes yes if ¬ID(σ) no yes

Weaker than Kahn monotonicity
SCC(H(σ)) = ∅

no no yes yes if ¬ID(σ) no yes
Common case, static over-approx.
SC(σ) ∨ Ω(ke) ∈ Π

yes yes yes yes yes no yes
Less restrictive than strictness
∀σ, SC(σ)

yes yes yes yes yes yes yes
Relaxed strictness
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Runtime Design and Implementation

Efficiency requirements

1. eliminate false sharing

2. use software caching to reduce cache traffic

3. avoid atomic operations on data that is effectively shared across
many cores

4. avoid effective sharing of concurrent structures
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Feed-Forward Data Flow
1. Resolve dependences at task creation

2. Producers know their consumers before executing
Feed-forward, a.k.a. argument fetch data flow

3. Local work-stealing queue for ready tasks

4. Producer decides which consumers become executable
I local consensus among producers providing data to the same task
I without traversing effectively shared data structures
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Comparison to Polling-Based Runtime

Block-sparse LU factorization on StarSs (block size 128× 128)
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Alternative: Using Explicit FIFOs

Arvind and Nikhil’s I-structures
Book: Implicit parallel programming in pH, 2001.
I-structures: infinite, operational indexed streams, with full/empty bits,
Single-Producer-Multiple-Consumers (SPMC)

I I-structures where introduced for in-place operations in data-flow
programs

I Kahn networks provide a functional definition (and denotational
semantics)

I Does not depend on a task scheduler to enforce dependences

I Caveats:
I No load balancing
I Need to derive a bounded implementation
I Cumbersome interaction with user-level thread scheduling: blocking

a task blocks the underlying worker (POSIX) thread! Need a
mechanism for lightweight task suspension

Implementation: ring buffer, vector of futures
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Streaming With FIFOs Wins: Evaluation on FFT

Mixed pipeline
and data-parallelism

Pipeline parallelism Cilk

Data-parallelism
OpenMP3.0 loops

OpenMP3.0 tasks
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Mixed pipeline
and data-parallelism

Pipeline parallelism CilkData-parallelism
OpenMP3.0 loops

OpenMP3.0 tasks

Best configuration for each FFT size

4-socket Opteron – 16 cores

How does it work? Please wait for implementation details
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Ongoing Work

Runtime optimization

I task placement and topology-aware stealing

I automatic task aggregation

I runtime deadlock detection in presence of speculative aggregation
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Ongoing Work

Distributed memory and heterogeneous platform execution
I Owner Writable Memory (OWM)

I software coherence protocol
I code-generation geared towards Distributed Shared Memory
I explicit cache/publish operations
I leverage one-sided communications and rDMA

I Nesting transactions and dynamic, task-level data flow

I Compiler transformations for dynamic, task-level data flow
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3. The Hammer: Language Design

OpenStream: dealing with the Von Neumann bottlenecks
Heptagon: safety-critical embedded systems
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Application Challenges

Computational applications with real-time control aspect

Embedded control systems running on more and more complex computer
architectures, with compiler optimizations, parallel execution, and

dynamic power management
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Application Challenges

Safety-critical applications with simulation in the loop

Consolidating applications in mixed-critical systems, enabling
communications between critical and non-critical components
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Heptagon Goals

Generate efficient parallel code

Preserving...

I the functional semantics of the program

I non-functional properties like static and bounded memory

I existing sequential compilation algorithms

I existing certification methodologies for embedded software

[Gérard et al., EMSOFT 2012]
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Common Practice in Embedded System Design
Matlab Simulink/StateFlow: mixed continuous/discrete signals, data-flow
and automata

fuel_rate

1
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In1

fuel_calc

est_airflow
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fuel_mode

fuel_rate

control_logic

es_i
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Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

y = x + m;

m = 0 fby y;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are lifted
pointwise

I The synchronous register fby

m 0 0 1 1 3 7 7 9 . . .
x 0 1 0 2 4 0 2 0 . . .
y 0 1 1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.
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Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0 1 2 3 4 . . .
big = period3() true false false true false . . .
xt = x when big 0 . . 3 . . . .

xf = x whenot big . 1 2 . 4 . . .
y = merge big xt xf 0 1 2 3 4 . . .
I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.
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The slow fast classical exemple

ys = 0 fby slow(1, ys);

ys 0 3.14 6.28 9.42 12.56 . . .

I slow: step integration with horizon of 1 second.

I fast: fast approximate with horizon of 1/3 second.

I We use the correct value when possible.

I And complement with the approximate one.
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The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast(1/3, y);

big = period3();

y = merge big ys (yf whenot big);

big true false false true false false true false . . .
ys 0 . . 3.14 . . 6.28 . . . .
yf 0 1 2 3 4.14 5.14 6.14 7.28 . . .
y 0 1 2 3.14 4.14 5.14 6.28 7.28 . . .

We would like to run them in parallel:
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The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast(1/3, y);

big = period3();

y = merge big ys (yf whenot big);

big true false false true false false true false . . .
ys 0 . . 3.14 . . 6.28 . . . .
yf 0 1 2 3 4.14 5.14 6.14 7.28 . . .
y 0 1 2 3.14 4.14 5.14 6.28 7.28 . . .

This is what happens, unfortunately:
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Synchronous register are synchronous

class Slow_fast {
Fast fast;

Slow slow;

Period3 period3;

float m;
float m2;

void reset () {

period3.reset();

slow.reset();

fast.reset();

m = 0.f;

m2 = 0.f;

}

float step () {
float y;

boolean big;

big = period3.step();

if (big) {
y = m;
m = slow.step(1.f, y);

} else {

y = m2;

}

m2 = fast.step(0.3f,y);

return y;
}

}

Reminder:
I y gets the value of the register m.

I During the same step, m is updated
for the next time.

This sequential compilation is:

I very efficient and simple

I traceable

I used and certified in Scade 6

But it prevents parallelization across step
boundaries.

Ocrep by A. Girault
The distributed imperative code is
optimized to bypass the synchronous
register.
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Decoupling slow fast with futures
node slow_fast() = (y :float)

var big :bool; yf :float; ys :float

let

ys = 0 fby slow(1, ys);

yf = 0 fby fast(1/3, y);

big = period3();

y = merge big ys (yf whenot big);

tel

We had this:
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We want this:
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Decoupling slow fast with futures
node slow_fast_a() = (y :float)

var big :bool; yf :float; ys :float

let
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tel
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Futures

I Futures appeared in MultiLisp [Halstead, 1985].

I Are now in most functional languages and Java, C++, etc.

I Depending on language integration, it can be a mere library.

What is a future?
It is a value, which will hold the result of a closed term.
Intuitively, it is a promise of result that is bound to come.

To guarantee futures integrity in Heptagon:

I future t is an abstract type, with t being the result type.

I A future may only be created from:
I Constants: async 42
I Asynchronous function calls: async f(x,y)

I !x “get” the result held by the future x — it is blocking .
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Unchanged compilation: find the 4 differences
class Slow_fast {
Fast fast;
Slow slow;
Period3 period3;
float m; float m2;
void reset () {
period3.reset();
slow.reset();
fast.reset();
m = 0.f;
m2 = 0.f;

}
float step () {
float y;
boolean big = period3.step();
if (big) {
y = m;
m = slow.step(1.f, y);

} else {
y = m2;

}
m2 = fast.step(0.3f,y);
return y;

}
}

class Slow_fast_a {
Fast fast;
Async<Slow> slow;
Period3 period3;
Future<float> m; float m2;
void reset () {
period3.reset();
slow.reset();
fast.reset();
m = new Future(0.f);
m2 = 0.f;

}
float step () {
float y;
boolean big = period3.step();
if (big) {
y = m.get();
m = slow.step(1.f, y);

} else {
y = m2;

}
m2 = fast.step(0.3f,y);
return y;

}
}
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Async<Slow> slow;
Period3 period3;
Future<float> m; float m2;
void reset () {
period3.reset();
slow.reset();
fast.reset();

m = new Future(0.f);
m2 = 0.f;

}
float step () {
float y;
boolean big = period3.step();
if (big) {
y = m.get();
m = slow.step(1.f, y);

} else {
y = m2;

}
m2 = fast.step(0.3f,y);
return y;

}
}
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Unchanged compilation: find the 4 differences
class Slow_fast {
Fast fast;
Slow slow;
Period3 period3;
float m; float m2;
void reset () {
period3.reset();
slow.reset();
fast.reset();
m = 0.f;
m2 = 0.f;

}
float step () {
float y;
boolean big = period3.step();
if (big) {
y = m;
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}
m2 = fast.step(0.3f,y);
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}
}

class Slow_fast_a {
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Period3 period3;
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void reset () {
period3.reset();
slow.reset();
fast.reset();

m = new Future(0.f);
m2 = 0.f;

}
float step () {
float y;
boolean big = period3.step();
if (big) {

y = m.get();
m = slow.step(1.f, y);

} else {
y = m2;

}
m2 = fast.step(0.3f,y);
return y;

}
}
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Implementation: the async wrapper

The async wrapper

I runs asynchronously a node in a worker thread.

I behaves like a node:
I step

I At each input a future is returned.
I Inputs are fed to the wrapped node through a buffer.

I reset is done so as to allow data-parallelism.

Important observations

I the need of an input buffer to allow decoupling

I the use of reset to enable data-parallelism
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Memory management

A future
I is a shared object with one producer, multiple consumers

I may be stored and used later on

I might not be used at all

I typically depends on the evaluation of upstream futures

Without restrictions, the live-range of a future is undecidable and a
concurrent gc is needed, as the one of java.

Memory boundedness
Alive futures are bounded by the number of synchronous registers.
A slab allocator is possible with static allocation and reuse.

Scope restriction for node level memory management
Preventing futures to be returned or passed to an async call,
allows gc and slab to be synchronous and node local .
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Backends

Existing Java backend

I Futures are the ones of Java

I Static queues and worker threads

I But dynamic allocation of futures

Existing C backend, aiming for embedded systems

I Hand tailored futures, queues and threads

I Slab allocator local to each node

I Futures have scope restrictions

Work-in-progress OpenStream backend

I Data-flow parallel runtime with high-performance task scheduler

I Handle a large number of async
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Code generation for embedded systems

async may be annotated with any needed static arguments.

Location annotations for distribution without scheduler:
I One thread per computing unit

I No surprise

I Usually not efficient

Priority annotations for EDF scheduling:

I Well known

I May be optimal

I Existing tools need to be adapted
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Wrap-Up on Heptagon
Semantics
Same semantics as the sequential program without async and !

Expressivness

I Synchronous language: time programming

I Futures: decouple and make explicit beginning and end of
computations

I Together they allow for programing parallelism:
I decoupling, partial-decoupling
I data-parallelism
I fork-join, temporal fork-join
I pipeline, etc.

Safety

I Statically serializable: futures in a pure language

I No dynamic memory allocation or thread creation

I Proven runtime system (scheduler, FIFO ring buffer)

I Proven compilation flow (part of it)
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4. The Anvil: Runtime System Design

Stream Processing?

Driving Force: Correct Concurrency by Construction

The Hammer: Language Design

The Anvil: Runtime System Design

Wrap-Up
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Concurrent Programming: Which Abstraction?

Simplest asynchronous model: sequential consistency
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Still... Non-Determinism, Data Races, Contention
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Real World is Worse: Relaxed Memory Models
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Shared-Memory Concurrency in the Real World
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Memory Consistency

I Sequential consistency: behavior equivalent to serial interleaving of
accesses.

I Will necessarily read r0 = 1 or r1 = 1

I Total Store Order (x86): write buffer delays visibility of stores from
other processors

I Can read r0 = 0 and r1 = 0
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Memory Consistency and Relaxation

Sequential consistency – interleaving

+ total order of all memory operations

– no longer a valid hypothesis: performance bottleneck

Total store order (x86)

+ total store order: reason about global invariants

– does not scale well

POWER, ARM, C/C++11, RC, WC, DAG, PC, LC...

– partial order of memory operations

– processors may have conflicting views of memory

+ better scalability at a lower power price tag
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Example: First Provably Correct Work-Stealing Scheduler

A relaxed lock-free work-stealing algorithm.

Two implementations: C11 and ARM inline assembly.

Based on state-of-the-art sequentially consistent algorithm (Chase and
Lev, 2005).

Proven for the POWER/ARM relaxed memory model (axiomatic
POWER model by Mador-Haim et al., 2012). POWER and ARM have
the same memory model.

[Lê et al., PPoPP 2013]

52 / 77



Work stealing (1)

Each core has an associated double-ended queue (deque)

I New tasks are pushed to the core’s deque

I When a task finishes, another is taken from the core’s deque

...

t (top)

b (bottom)

take push

...

t

b

take push

Core 0 Core 1
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Work stealing (2)

If a task finishes, and the queue is empty, the core steals from another
deque
Cores alternate between the worker and thief roles
We focus on the study of a single deque (hereafter, the deque)

...

t

b

steal

t = b

take push

no work
can't take
can't push

Thief Worker
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Expected properties

Legal reads Only tasks pushed are taken or stolen

Uniqueness A task pushed into the deque cannot be taken or stolen
more than once

Existence Tasks are not lost because of concurrency

Progress Given a finite number of tasks, the deque is eventually
emptied
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Concurrency problems

Two thieves attempt to steal the same task
Worker and thief contend for the same task

other deques

steal x?

steal x?

x

take x? other deques

steal x?

x
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Steal/steal resolution in SC

Proven by Chase and Lev for sequential consistency (SC)
Steal/steal resolution with compare-and-swap (CAS)

other deques

CAS?

CAS?

x
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Steal/steal resolution in SC

Proven by Chase and Lev for sequential consistency (SC)
Steal/steal resolution with compare-and-swap (CAS)

other deques

race won: steal x

race lost:
return failurex
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Take/steal resolution in SC

Proven by Chase and Lev for sequential consistency (SC)
Potential take/steal races only if one task left; detected through
comparison of indices (t and b)
If one task: worker “self steals” from its own deque with a CAS

if t = b-1:
need CAS

other deques

x
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CAS? other deques
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Take/steal resolution in SC

Proven by Chase and Lev for sequential consistency (SC)
Potential take/steal races only if one task left; detected through
comparison of indices (t and b)
If one task: worker “self steals” from its own deque with a CAS

race lost:
return empty

other deques

race won: steal x

x
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Summary of operations in SC

Table below shows how operations affect indices

push ++b
take (deque size > 1) −−b
take (deque size = 1) ++t if CAS successful
steal ++t if CAS successful
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A relaxed concurrency problem (1)

1. Let’s assume the deque starts with three tasks

2. Thief 1 steals two tasks; the others don’t know yet

3. Thief 2 sees the two steals and attempts to steal x[2]

4. Worker sees only the first steal and takes x[2]

Thief 1

Thief 2

Worker Wb,3

push

0 1 2 3

Worker's deque
t b

t b

t b
some time
after the push

every core sees
the same state

Wx ,v denotes a write of the value v to the variable x
Blue bins represent the views of Worker’s deque from each core
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push

0 1 2 3

Worker's deque
t b

t b
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push
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Wt,1
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steal

t b
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1. Let’s assume the deque starts with three tasks

2. Thief 1 steals two tasks; the others don’t know yet

3. Thief 2 sees the two steals and attempts to steal x[2]

4. Worker sees only the first steal and takes x[2]

Thief 1

Thief 2

Worker Wb,3

push

0 1 2 3

Worker's deque

Wt,2

steal

Wt,1

steal

t b

sees

sees

seesRt,2 Rb,3

steal

t b

take

Rb,3 Wb,2 Rt,1

steals x[2]

takes x[2]
(no CAS)

t b

Rx ,v denotes a read of the value v from the variable x
Black arrows represent communications

60 / 77



A relaxed concurrency problem (2)

Why does it happen?

Different views of the indices in each core
The state of the deque is relative to the core that observes it
( 6= SC where the state of the deque is the same for all)

The worker does not realize that it is taking the last element
(from its viewpoint, t 6= b-1)
Hence no CAS to resolve the conflict
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Sequentially consistent ideas (1)

Why is it different in SC?

In SC, all memory events are totally ordered
Transitively so

Thief 1

Thief 2

Worker Wb,3

push

Wt,2

steal

Wt,1

steal

Rt,2 Rb,3

steal

take

Rb,3 Wb,2 Rt,τ

Operations on the same variable are ordered by coherency
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Sequentially consistent ideas (1)

Why is it different in SC?

In SC, all memory events are totally ordered
Transitively so

Thief 1

Thief 2

Worker Wb,3

push

Wt,2

steal

Wt,1

steal

Rt,2 Rb,3

steal

take

Rb,3 Wb,2 Rt,τ

Operations on the same variable are ordered by coherency
Rb,3 in Thief 2 occurs before Wb,2; otherwise, it would read 2
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Sequentially consistent ideas (1)

Why is it different in SC?

In SC, all memory events are totally ordered
Transitively so

Thief 1

Thief 2

Worker Wb,3

push

Wt,2

steal

Wt,1

steal

Rt,2 Rb,3

steal

take

Rb,3 Wb,2 Rt,τ

Transitively, Worker has already seen Wt,2 overwrite Wt,1
Hence, Rt,τ cannot read 1
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Sequentially consistent ideas (2)

In SC, a test in one core gives information about other cores: the state is
the same for all at any given time

Can test for special cases (e.g., single-task queue t = b-1)
Can test for invariants (e.g., well-formed queue t 6 b)
Can use induction on these invariants

SC (all cores) t≤b t≤b t≤b t≤b t≤b
implies
no take/steal conflict

Does not hold in a relaxed memory model.
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POWER/ARM barriers and cumulativity

Recall the situation in the previous example

Thief 1

Thief 2

Worker Wb,3

push

Wt,2

steal

Wt,1

steal

Rt,2 Rb,3

steal

take

Rb,3 Wb,2 Rt,τ

Rb,3 in Thief 2 reads from Wb,3 in Worker
Rt,2 in Thief 2 reads from Wt,2 in Thief 1
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POWER/ARM barriers and cumulativity

Recall the situation in the previous example

Thief 1

Thief 2

Worker Wb,3

push

Wt,2

steal

Wt,1

steal

Rt,2 Rb,3

steal

take

Rb,3 Wb,2 Rt,τ

allowed

What values of t can we read in Worker?
With relaxed semantics, τ can be either 1 or 2
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POWER/ARM barriers and cumulativity

A sync memory barrier instruction guarantees that all the writes that
have been observed by the core issuing the barrier instruction are
propagated to all the other cores before the core can continue

Thief 1

Thief 2

Worker Wb,3

push

Wt,2

steal

Wt,1

steal

Rt,2 Rb,3

steal

take

Rb,3 Wb,2 Rt,τ

allowed
forbidden

fence

With memory fences, however, Rt,τ cannot read 1
The two fences stall each other until one has finished

64 / 77



Experimental results (on Tegra 3, 4-core ARM)
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More on Weak Memory Models

I First application of a formal relaxed memory model to the manual
proof of a moderately complex real-world algorithm

I Two effcient implementations: C11 and inline assembly; tested on
ARM, POWER and x86

Recent and ongoing work:

I Proof of a fast SPSC FIFO ring buffer in C11

I Index-based MPMC FIFO: “Erbium”

I Combined FIFO and scheduling with lightweight suspension and
wake-up

Perspectives:

I Global address space models for software caches/DSMs

I Application to manycore processors with on-chip distributed memory

I E.g., Kalray MPPA
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FIFO Ring Buffer: Lock-Free Implementations

I SPSC: only needs release/acquire (free on x86)
Lamport’s FIFO, Lee et al.’s MCRB

I SPMC/MPSC: needs an atomic operation

I MPMC: often implemented using SPMC + MPSC (useful for data
parallelism)

FastFlow: http://mc-fastflow.sourceforge.net

I Indexed-based MPMC: only needs release/acquire (free on x86)
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Fast Implementations of SPSC Streams

Ring buffer with two pointers/indices

I Issue: detect full buffers with back-pressure

I Simplest and efficient solution for powers of two: absolute indices
Need arithmetic care to deal with wrap-arounds and (32bit)
overflows

I Cache-aware optimization
I Manual/software caching of the last index
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Lamport’s Lock-Free FIFO Queue in C11

atomic_size_t front;
atomic_size_t back;
T data[SIZE];

void init(void) {
atomic_init(front, 0);
atomic_init(back, 0);

}

bool push(T elem) {
size_t b, f;
b = atomic_load(&back, seq_cst);
f = atomic_load(&front, seq_cst);
if ((b + 1) % SIZE == f)
return false;

data[b] = elem;
atomic_store(&back, (b+1)%SIZE, seq_cst);
return true;

}

bool pop(T *elem) {
size_t b, f;
b = atomic_load(&back, seq_cst);
f = atomic_load(&front, seq_cst);
if (b == f)
return false;

*elem = data[b];
atomic_store(&front, (f+1)%SIZE, seq_cst);
return true;

}
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Optimization: WeakRB
atomic_size_t front;
size_t pfront;
atomic_size_t back;
size_t cback;

_Static_assert(SIZE_MAX % SIZE == 0,
"SIZE div SIZE_MAX");

T data[SIZE];

void init(void) {
atomic_init(front, 0);
atomic_init(back, 0);

}

bool push(const T *elems, size_t n) {
size_t b, f;
b = atomic_load(&back, relaxed);
if (pfront + SIZE - b < n) {
pfront = atomic_load(&front, acquire);
if (pfront + SIZE - b < n)
return false;

}
for (size_t i = 0; i < n; i++)
data[(b+i) % SIZE] = elems[i];

atomic_store(&back, b + n, release);
return true;

}

bool pop(T *elems, size_t n) {
size_t b, f;
f = atomic_load(&front, relaxed);
if (cback - f < n) {
cback = atomic_load(&back, acquire);
if (cback - f < n)
return false;

}
for (size_t i = 0; i < n; i++)
elems[i] = data[(f+i) % SIZE];

atomic_store(&front, f + n, release);
return true;

}
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Evaluation Platforms

Machine Cortex A9 Core i7

Manufacturer Samsung Intel
ISA ARMv7 x86 64
Number of cores 4 4 (8 logical)
Clock frequency 1.3 GHz 3.4 GHz
Best throughput 2.2,GB/s 22 GB/s

71 / 77



Performance Results
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Comparing MCRB and WeakRB on Cortex A9
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Erbium: Fast Index-Based MPMC Streams

read−onlyread−onlyread/write

write view horizon read view horizon
process

write view

last defined

stall commit updatelast available

process

release

2 1 0
read view

2 1 02 14 3

record

v0v2v2 v1 v0v3 v2 v1v4 v1

Stream synchronization primitives

I commit()/update(): pressure

I release()/stall(): back-pressure

I receive(): prefetch on a sliding window

I Deterministic initialization protocol and garbage collection of dead
sliding windows

[Miranda et al., CASES 2010]
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Erbium: Fast Index-Based MPMC Streams
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Erbium: Lightweight runtime
Ring buffer with two sets of indices, for the producer and consumer sides

I Cache the minimum of the producer (resp. consumer) indices

I Cache-aware optimization
I Alignment of shared indices to avoid false sharing
I Manual/software caching of the last index
I Monotonicity tolerates races on minimum index computation

I Lock-free, consensus-free implementation
I No HW atomic instruction, no fence on x86

I ≈ 10 cycles per streaming communication cycle
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5. Wrap-Up

Stream Processing?

Driving Force: Correct Concurrency by Construction

The Hammer: Language Design

The Anvil: Runtime System Design

Wrap-Up
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Streaming Data Flow

Kahn networks

I Deterministic parallelism

I Abstract description and/or distributed implementation

I Mathematical (ideal) model: stream equations, differential
equations, automata

I The compiler plays a central role: restrict to executable
specifications, optimization, exposing task parallelism

I Inspiration for a scalable and efficient runtime system for dynamic
dependence resolution and task scheduling

Synchronous Kahn parallelism

I As a programming model for dealing with time and parallelism

I And as an internal representation in optimizing compilers

I And for code generation down to sequential and parallel code

I Full traceability between the source and target code
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OpenStream Impact and Dissemination

1. Used in 3 collaborative research projects

2. Used in 3 ongoing PhD theses (ÉNS, INRIA and UPMC)

3. Used in a parallel programming course project at Politecnico di Torino

4. Ongoing work to port OpenStream on Kalray MPPA

5. Used for developing and evaluating communication channel synchronization
algorithms by Preud’Homme et al. in ”An Improvement of OpenMP Pipeline
Parallelism with the BatchQueue Algorithm,” ICPADS 2012

6. Proven work-stealing implementation discussed within OpenJDK and help debug
SAP’s distributed GC

7. OpenStream featured in the HPCwire magazine
www.hpcwire.com/hpcwire/2013-01-24/the_week_in_hpc_research.html?page=3

8. Source code publicly available on Sourceforge
http://sourceforge.net/p/open-stream/

9. Project website: http://openstream.info
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