
© 2013 IBM Corporation

Reflections on X10
Towards Performance and Productivity at Scale

David Grove
IBM TJ Watson Research Center

This material is based upon work supported in part by the
Defense Advanced Research Projects Agency under its Agreement No. HR0011-07-9-0002

© 2013 IBM Corporation2

Acknowledgments

 X10 research project started in 2004…

 Major technical contributions from many people
– IBM X10 team (current and former) > 50 people
– External research collaborators
– X10 user community
– IBM PERCS project team

 Support from
– DARPA HPCS
– US Department of Energy
– US Air Force Research Lab
– IBM

© 2013 IBM Corporation3

Talk Objectives

 Fundamental challenges: What is X10 all about?

 Insights into the APGAS Programming Model
– Applicability beyond the X10 language
– Realization of APGAS Model in X10

 X10 In Use
– X10 At Scale
– X10 + Java  Commercial Applications
– X10 Community Activities

 Language design and implementation alternatives and their implications

© 2013 IBM Corporation4

Talk Outline

 X10 Programming Model
– Overview
– Code snippets
– Larger examples

 X10 in Use
– Scaling X10
– Agent simulation (Megaffic/XAXIS)
– Main Memory Map Reduce (M3R)

 Implementing X10
– Compiling X10
– X10 Runtime

 Final Thoughts

© 2013 IBM Corporation5

X10 Genesis: DARPA HPCS Program (2004)

High Productivity Computing Systems

Central Challenge: Productive Programming of Large Scale Supercomputers
– Clustered systems

• 1000’s of SMP Nodes connected by high-performance interconnect
• Large aggregate memory, disk storage, etc.

SMP ClustersSMP Clusters

. . .

Memory

PEs,

SMP Node

PEs,

.

Memory

PEs,

SMP Node

PEs,

Interconnect

Massively Parallel Processor
Systems

Massively Parallel Processor
Systems

IBM Blue GeneIBM Blue Gene

© 2013 IBM Corporation6

Programming Model Challenges

 Scale Out
– Program must run across many nodes (distributed memory; network capabilities)

 Scale Up
– Program must exploit multi-core and accelerators (concurrency; heterogeneity)

 Both Productivity and Performance
– Bring modern commercial tooling/languages/practices to HPC programmers
– Support high-level abstractions, code reuse, rapid prototyping
– While still enabling full utilization of HPC hardware capabilities at scale

© 2013 IBM Corporation7

X10 Performance and Productivity at Scale

 X10 Language
– Java-like language (statically typed, object oriented, garbage-collected)
– Ability to specify scale-out computations (exploit modern networks, clusters)
– Ability to specify fine-grained concurrency (exploit multi-core)
– Single programming model for computation offload and heterogeneity (exploit GPUs)

 X10 Tool chain
– Open source compiler, runtime, class libraries
– Dual path: Managed X10 (X10Java) and Native X10 (X10 C++)
– Command-line tooling (compile/execute)
– Linux, Mac OSX, Windows, AIX; x86, Power; sockets, MPI, PAMI, DCMF
– Eclipse-based IDE (edit/browse/compile/execute)

© 2013 IBM Corporation8

Partitioned Global Address Space (PGAS) Languages

Managing locality is a key programming task in a distributed-memory system

PGAS combines a single global address space with locality awareness
– PGAS languages: Titanium, UPC, CAF, X10, Chapel
– Single address space across all shared-memory nodes

• any task or object can refer to any object (local or remote)
– Partitioned to reflect locality

• each partition (X10 place) must fit within a shared-memory node
• each partition contains a collection of tasks and objects

In X10
– tasks and objects are mapped to places explicitly
– objects are immovable
– tasks must spawn remote task or shift place to access remote objects

© 2013 IBM Corporation9

Place-shifting operations

• at(p) S

• at(p) e

… …… …

Activities

Local
Heap

Place 0

……
…

Activities

Local
Heap

Place N

…

Global
Reference

Distributed heap

• GlobalRef[T]

• PlaceLocalHandle[T]

X10 Combines PGAS with Asynchrony (APGAS)

Fine-grain concurrency

• async S

• finish S

Atomicity

• when(c) S

• atomic S

© 2013 IBM Corporation10

Concurrency: async and finish

async S

• Creates a new child activity that executes statement
S

• Returns immediately

• S may reference variables in enclosing blocks

• Activities cannot be named/cancelled.

finish S

 Execute S, but wait until all (transitively) spawned
asyncs have terminated.

 finish is useful for expressing “synchronous”
operations on (local or) remote data.

 Rooted exception model

– Trap all exceptions and throw an (aggregate)
exception if any spawned async terminates
exceptionally.

// Compute the Fibonacci
// sequence in parallel.
def fib(n:Int):Int {
if (n < 2) return 1;
val f1:Int;

 val f2:Int;
finish {
async f1 = fib(n-1);
f2 = fib(n-2);

}
return f1+f2;

}

© 2013 IBM Corporation11

Atomicity: atomic and when

atomic S
 Execute statement S atomically

 Atomic blocks are conceptually executed in a
serialized order with respect to all other
atomic blocks in a Place: isolation and weak
atomicity.

 An atomic block body (S) must be
nonblocking, sequential, and local

when (E) S
 Activity suspends until a state in which the

guard E is true.

 In that state, S is executed atomically and in
isolation.

 Guard E is a boolean expression and must be
nonblocking, sequential, local, and pure

// push data onto concurrent
// list-stack
val node = new Node(data);
atomic {
node.next = head;
head = node;

}

class OneBuffer {
var datum:Object = null;
var filled:Boolean = false;
…
def receive():Object {
when (filled) {
val v = datum;
datum = null;
filled = false;
return v;

}
}

© 2013 IBM Corporation12

Atomicity: atomic and when (and locks)

 X10 currently implements atomic and when trivially with a per-Place lock
– All atomic/when statements serialized within a Place
– Scheduler re-evaluates pending when conditions on exit of atomic section
– Poor scalability on multi-core nodes; when especially inefficient

 Pragmatics: class library provides lower-level alternatives
– x10.util.concurrent.Lock – pthread mutex
– x10.util.concurrent.AtomicInteger et al – wrap machine atomic update operations

 An aspect of X10 where our implementation has not yet matched our ambitions…
– Area for future research
– Natural fit for transactional memory (STM/HTM/Hybrid)

© 2013 IBM Corporation13

Distribution: Places and at

at (p) S

 Execute statement S at place p

 Current activity is blocked until S completes

 Deep copy of local object graph to target
place; the variables referenced from S define
the roots of the graph to be copied.

 GlobalRef[T] used to create remote pointers
across at boundaries

class C {
var x:int;
def this(n:int) { x = n; }

}

// Increment remote counter
def inc(c:GlobalRef[C]) {
at (c.home) c().x++;

}

// Create GR of C
static def make(init:int) {
val c = new C(init);
return GlobalRef[C](c);

}

© 2013 IBM Corporation14

X10’s Distributed Object Model

 Objects live in a single place

 Objects can only be accessed in the place where they live

 Cross-place references
– GlobalRef[T] reference to an object at one place that can be transmitted to other places
– PlaceLocalHandle[T] “handle” for a distributed data structure with state (objects) at

many places. Optimized representation for a collection of GlobalRef[T] (one per place).

 Implementing at
– Compiler analyzes the body of at and identifies roots to copy (exposed variables)
– Complete object graph reachable from roots is serialized and sent to destination place
– A new (unrelated) copy of the object graph is created at the destination place

 Controlling object graph serialization
– Instance fields of class may be declared transient (won’t be copied)
– GlobalRef[T]/PlaceLocalHandle[T] serializes id, not the referenced object
– Classes may implement CustomSerialization interface for arbitrary user-defined behavior

 Major evolutions in object model: X10 1.5, 1.7, 2.0, and 2.1 (fourth time is the charm? )

© 2013 IBM Corporation15

Hello Whole World

1/class HelloWholeWorld {
2/ public static def main(args:Rail[String]) {
3/ finish
4/ for (p in Place.places())
5/ at (p)
6/ async
7/ Console.OUT.println(p+" says " +args(0));
8/ Console.OUT.println(“Goodbye”);
9/ }
10/}

("

% x10c++ HelloWholeWorld.x10

% X10_NPLACES=4; ./a.out hello

Place 0 says hello

Place 2 says hello

Place 3 says hello

Place 1 says hello

Goodbye

© 2013 IBM Corporation16

APGAS Idioms

 Remote evaluation
v = at (p) evalThere(arg1, arg2);

 Active message
at (p) async runThere(arg1, arg2);

 Recursive parallel decomposition
def fib(n:Int):Int {
 if (n < 2) return 1;
 val f1:Int;
 val f2:Int;
 finish {
 async f1 = fib(n-1);
 f2 = fib(n-2);
 }
 return f1 + f2;
}

 SPMD
finish for (p in Place.places()) {
 at(p) async runEverywhere();
}

 Atomic remote update
at (ref) async atomic ref() += v;

 Data exchange
// swap row i local and j remote
val h = here;
val row_i = rows()(i);
finish at(p) async {
 val row_j = rows()(j);
 rows()(j) = row_i;
 at(h) async row()(i) = row_j;
}

A handful of key constructs cover a broad spectrum of patterns

© 2013 IBM Corporation17

Outline

 X10 Programming Model
– Overview
– Code snippets
– Larger examples

• Row Swap from LU
• Unbalanced Tree Search

 X10 in Use
– Scaling X10
– Agent simulation (Megaffic/XAXIS)
– Main Memory Map Reduce (M3R)

 Implementing X10
– Compiling X10
– X10 Runtime

 Final Thoughts

© 2013 IBM Corporation18

Row Swap from LU Benchmark

 Programming problem
– Efficiently exchange swap rows in distributed matrix with another Place
– Exploit network capabilities
– Overlap communication with computation

Local setup

at (dst) async { … }

asyncCopy get

asyncCopy put Local swap

Local swap

Blocked

On

Finish

Initiating Place Destination Place

Blocked on finish

© 2013 IBM Corporation19

Row Swap from X10 LU Benchmark

// swap row with index srcRow located here with row with index dstRow located at place dst

def rowSwap(matrix:PlaceLocalHandle[Matrix[Double]], srcRow:Int, dstRow:Int, dst:Place) {

 val srcBuffer = buffers();

 val srcBufferRef = new RemoteRail(srcBuffer);

 val size = matrix().getRow(srcRow, srcBuffer);

 finish {

 at (dst) async {

 finish {

 val dstBuffer = buffers();

 Array.asyncCopy[Double](srcBufferRef, 0, dstBuffer, 0, size);

 }

 matrix().swapRow(dstRow, dstBuffer);

 Array.asyncCopy[Double](dstBuffer, 0, srcBufferRef, 0, size);

 }

 }

 matrix().setRow(srcRow, srcBuffer);

}

© 2013 IBM Corporation20

Global Load Balancing

 Unbalanced Tree Search Benchmark
– count nodes in randomly generated tree
– separable cryptographic random number generator
– highly unbalanced trees
– unpredictable
– tree traversal can be easily relocated (no data dependencies, no locality)

 Problems to be solved:
– Dynamically balance work across a large number of places efficiently
– Detect termination of the computation quickly.

 Conventional Approach:
– Worker steals from randomly chosen victim when local work is exhausted.
– Key problem: When does a worker know there is no more work?

© 2013 IBM Corporation21

Global Load Balance: The Lifeline Solution

 Intuition: X0 already has a framework for distributed termination detection – finish.
Use it!

 But this requires activities terminate at some point!

 Idea: Let activities terminate after w rounds of failed steals. But ensure that a worker
with some work can “distribute” work (= use at(p) async S) to nodes known to be idle.

– Lifeline graphs. Before a worker dies it creates z lifelines to other nodes.
– These form a distribution “overlay” graph.
– What kind of graph? Need low out-degree, low diameter graph.

Our paper/implementation uses hyper-cube.

© 2013 IBM Corporation22

Scalable Global Load Balancing
Unbalanced Tree Search

 Lifeline-based global work stealing [PPoPP’11]
– n random victims then p lifelines (hypercube)

• fixed graph with low degree and low diameter
– synchronous (steal) then asynchronous (deal)

 Root finish accounts for
– startup asyncs + lifeline asyncs
– not random steal attempts

 Compact work queue (for shallow trees)
– represent intervals of siblings
– thief steals half of each work item

 Sparse communication graph
– bounded list of potential random victims
– finish trades contention for latency

 genuine APGAS algorithm

© 2013 IBM Corporation23

UTS
Main Loop

def process() {
 alive = true;
 while (!empty()) {
 while (!empty()) { processAtMostN(); Runtime.probe(); deal(); }
 steal();
 }
 alive = false;
}

def steal() {
 val h = here.id;
 for (i:Int in 0..w) {
 if (!empty()) break;
 finish at (Place(victims(rnd.nextInt(m)))) async request(h, false);
 }
 for (lifeline:Int in lifelines) {
 if (!empty()) break;
 if (!lifelinesActivated(lifeline)) {
 lifelinesActivated(lifeline) = true;
 finish at (Place(lifeline)) async request(h, true);
} } }

© 2013 IBM Corporation24

UTS
Handling Thieves

def request(thief:Int, lifeline:Boolean) {
 val nodes = take(); // grab nodes from the local queue
 if (nodes == null) {
 if (lifeline) lifelineThieves.push(thief);
 return;
 }
 at (Place(thief)) async {
 if (lifeline) lifelineActivated(thief) = false;
 enqueue(nodes); // add nodes to the local queue
} }

def deal() {
 while (!lifelineThieves.empty()) {
 val nodes = take(); // grab nodes from the local queue
 if (nodes == null) return;
 val thief = lifelineThieves.pop();
 at (Place(thief)) async {
 lifelineActivated(thief) = false;
 enqueue(nodes); // add nodes to the local queue
 if (!alive) process();
} } }

© 2013 IBM Corporation25

Outline

 X10 Programming Model
– Overview
– Code snippets
– Larger examples

• Row Swap from LU
• Unbalanced Tree Search

 X10 in Use
– Scaling X10
– Agent simulation (Megaffic/XAXIS)
– Main Memory Map Reduce (M3R)

 Implementing X10
– Compiling X10
– X10 Runtime

 Final Thoughts

© 2013 IBM Corporation26

X10 At Scale

X10 has places and asyncs in each place

We want to

 Handle millions of asyncs ( billions)

 Handle tens of thousands of places ( millions)

We need to

 Scale up
– shared memory parallelism (today: 32 cores per place)
– schedule many asyncs with a few hardware threads

 Scale out
– distributed memory parallelism (today: 50K places)
– provide mechanisms for efficient distribution (data & control)
– support distributed load balancing

© 2013 IBM Corporation27

DARPA PERCS Prototype (Power 775)

 Compute Node
– 32 Power7 cores 3.84 GHz
– 128 GB DRAM
– peak performance: 982 Gflops
– Torrent interconnect

 Drawer
– 8 nodes

 Rack
– 8 to 12 drawers

 Full Prototype
– up to 1,740 compute nodes
– up to 55,680 cores
– up to 1.7 petaflops

• 1 petaflops with 1,024 compute nodes

© 2013 IBM Corporation28

Eight Benchmarks

 HPC Challenge benchmarks
– Linpack TOP500 (flops)
– Stream Triad local memory bandwidth
– Random Access distributed memory bandwidth
– Fast Fourier Transform mix

 Machine learning kernels
– KMEANS graph clustering
– SSCA1 pattern matching
– SSCA2 irregular graph traversal
– UTS unbalanced tree traversal

Implemented in X10 as pure scale out tests

 One core = one place = one main async

 Native libraries for sequential math kernels: ESSL, FFTW, SHA1

© 2013 IBM Corporation29

Performance at Scale (Weak Scaling)

cores absolute
performance

at scale

parallel efficiency
(weak scaling)

performance relative to best
implementation available

Stream 55,680 397 TB/s 98% 85% (lack of prefetching)

FFT 32,768 27 Tflops 93% 40% (no tuning of seq. code)

Linpack 32,768 589 Tflops 80% 80% (mix of limitations)

RandomAccess 32,768 843 Gups 100% 76% (network stack overhead)

KMeans 47,040 depends on
parameters

97.8% 66% (vectorization issue)

SSCA1 47,040 depends on
parameters

98.5% 100%

SSCA2 47,040 245 B edges/s > 75% no comparison data

UTS (geometric) 55,680 596 B nodes/s 98% reference code does not scale
4x to 16x faster than UPC code

29

© 2013 IBM Corporation30

HPCC Class 2 Competition: Best Performance Award

© 2013 IBM Corporation31

Traffic Simulator

Megaffic

Simulation Base
IBM eXtensible Agent

eXecution InfraStructure

(XAXIS)

Analysis by
Mathematical

Modeling
•Link Cost Prediction

•Driver Behavior Modeling

•Traffic Demands
Estimation

Visualization

IBM Mega Traffic Simulator (Megaffic)

This project is funded by the PREDICT project of Ministry of Internal Affairs and Communications, Japan.

Road
Transition

cost

Driver
Behavior

Model

Traffic
Demand

Data

Traffic
Demands

Data Map Data

Map Data

Probe Car
Data

Graph Editor
Scalable simulation engine for supporting
parallel execution environment

e.g.
•CO2 emission
•moving time
•speed
•vehicle num

IBM Research has created a Large-scale multi-agent traffic simulator.

Driver Behavior Modeling:
Automatically generate
preferences of drivers from
probe car data. A preference is
a set of weights over different
policies such as minimum
travel time, minimum # of
turns, etc. The weights are
automatically learned from the
data.

Minimum travel time

Minimum
distance

Actual path

Minimum number of turns

Origin Destination

P
re

fe
re

nc
e

Driver ID

© 2013 IBM Corporation32

© 2013 IBM Corporation33

City Planning Example: What-if Simulation of Sendai City
After the Great East-Japan Earthquake, there were some cavings on the roads in Sendai city, and there was heavy
traffic jam. The below picture shows simulation results of different (imaginary) scenarios of actions to reduce traffic
jam by road closure. This what-if simulation capability can help traffic administrators pick the best decision out of
some choices even in new situations.

Scenario 1: No Action

Road closure. Road closure. Road closures.

caving

Traffic jam in
the center area
of the city

Traffic jam
disappears in the
center, but appears
in the upper

You can see several
KPIs to know how
good a scenario is.

Scenario 2: Road Closure A Scenario 3: Road Closure B Scenario 4: Road Closure C

© 2013 IBM Corporation34

Why X10?

 X10/Java interoperability lowered risk of adopting X10
– Scale out existing Java-based simulation framework with APGAS primitives
– Gradual porting of core code to X10 (enabled Native X10 & BlueGene/Q)

CP1

CP2

CP3CP0

X10 Place 1

X10 Place 2X10 Place 0

Road 0

Road 1

Road 2

CP: Cross Point

© 2013 IBM Corporation35

XAXIS Software Stack

 The following diagram illustrates the software stack of XAXIS and its applications.

35

Social Simulation(Java)(e.g. Traffic,

CO2 Emission, Auction, Marketing)

Social Simulation(Java)(e.g. Traffic,

CO2 Emission, Auction, Marketing)

XAXIS : X10-Based
Simulation Runtime
XAXIS : X10-Based
Simulation Runtime

Social
Simulatio
n (X10)

Social
Simulatio
n (X10)

Java BridgeJava Bridge

X10 (Java, C++)X10 (Java, C++)

XAXIS API

X10 Bridge X10 Bridge

© 2013 IBM Corporation36

M3R – A Hadoop re-implementation in Main Memory, using X10

• Hadoop
– Popular Java API for Map/Reduce programming
– Out of core, resilient, scalable (1000 nodes)
– Based on HDFS (a resilient distributed filesystem)

• M3R/Hadoop
– Reimplementation of Hadoop API using Managed X10 (X10 compiled to Java)

– X10 provides scalable multi-JVM runtime with efficient communication
– Existing Hadoop 1.0 applications ‘just work’
– Reuse HDFS (and some other parts of Hadoop)
– In-memory: problem size must fit in aggregate cluster RAM
– Not resilient: cluster scales until MTBF barrier
– But considerably faster (closer to HPC speeds)
– Trade resilience for performance (both latency and throughput)

© 2013 IBM Corporation37

M3R Architecture

 The core M3R engine provides X10 and Java Map/Reduce APIs against which application
programs can be written.

 On top of the engine, a Hadoop API compatibility layer allows unmodified Hadoop
Map/Reduce jobs to be executed on the engine.

 The compatibility layer is written using a mix of X10 and Java code and heavily uses the
Java interoperability capabilities of Managed X10.

Hadoop M/R
Engine

HDFS
data

M3R Engine
X10 Java

JVM only

JVM/Native

Java Hadoop jobs

X10 M3R jobs

Java M3R jobs

HDFSHadoop/M3R
adaptor

HDFS

© 2013 IBM Corporation38

Intuition: Where does M3R gain performance relative to Hadoop?

 Reducing Disk I/O

 Reducing network communication

 Reducing serialization/deserialization
– Reduce translation of object graphs to byte buffers & back

 Reducing “other” costs
– Job submission speed
– Startup time (JVM reuse synergistic with JIT compilation)
– …

 Partition Stability (iterative jobs)
– Enable application programmer to “pin” data in memory within Hadoop APIs
– The reducer associated with a given partition number will always be run in the same

JVM

 For details, see [Shinnar et al VLDB’12]

© 2013 IBM Corporation39

Additional X10 Community Applications

 Additional X10 Applications/Frameworks
– ANUChem http://cs.anu.edu.au/~Josh.Milthorpe/anuchem.html, [Milthorpe IPDPS 2013]
– ScaleGraph https://sites.google.com/site/scalegraph/ [Dayarathna et al X10 2012]
– Invasive Computing [Bungartz et al X10 2013]

 X10 as a coordination language for scale-out
– SatX10 http://x10-lang.org/satx10, [SAT’12 Tools]
– Power system contingency analysis [Khaitan & McCalley X10 2013]

 X10 as a target language
– MatLab http://www.sable.mcgill.ca/mclab/mix10.html, [Kumar & Hendren X10 2013]
– StreamX10 [Wei et al X10 2012]

 X10 Publications: http://www.x10-lang.org/x10-community/publications-using-x10.html

© 2013 IBM Corporation40

Outline

 X10 Programming Model
– Overview
– Code snippets
– Larger examples

• Row Swap from LU
• Unbalanced Tree Search

 X10 in Use
– Scaling X10
– Agent simulation (Megaffic/XAXIS)
– Main Memory Map Reduce (M3R)

 Implementing X10
– Compiling X10
– X10 Runtime

 Final Thoughts

© 2013 IBM Corporation41

X10 Target Environments

 High-end large HPC clusters
– BlueGene/P and BlueGene/Q
– Power775 (aka PERCS machine, P7IH)
– x86 + InfiniBand, Power + InfiniBand
– Goal: deliver scalable performance competitive with C+MPI

 Medium-scale commodity systems
– ~100 nodes (~1000 core and ~1 terabyte main memory)
– Goal: deliver main-memory performance with simple programming model (accessible to

Java programmers)

 Developer laptops
– Linux, Mac OSX, Windows. Eclipse-based IDE
– Goal: support developer productivity

© 2013 IBM Corporation42

X10 Implementation Summary

 X10 Implementations
– C++ based (“Native X10”)

• Multi-process (one place per process; multi-node)
• Linux, AIX, MacOS, Cygwin, BlueGene
• x86, x86_64, PowerPC, GPUs (CUDA, language subset)

– JVM based (“Managed X10”)
• Multi-process (one place per JVM process; multi-node)
• Current limitation on Windows to single process (single place)
• Runs on any Java 6 or Java 7 JVM

 X10DT (X10 IDE) available for Windows, Linux, Mac OS X
– Based on Eclipse 3.7
– Supports many core development tasks including remote build/execute facilities

© 2013 IBM Corporation43

X10 Compilation & Execution

X10
Source

Parsing /
Type Check

AST Optimizations
AST LoweringX10 AST

X10 AST

Java Code
Generation

C++ Code
Generation

Java Source C++ Source

Java Compiler Platform CompilersXRJ XRCXRX

 Java Byteode Native executable

X10RT

X10 Compiler Front-End

Java
Back-End

C++
Back-End

Native Environment
(CPU, GPU, etc)

Java VMs

JNI

Managed X10 Native X10

Existing Java
Application

Existing Native (C/C+
+/etc) Application

Java Interop
Support

CUDA Source

© 2013 IBM Corporation44

Java vs. C++ as Implementation Substrate

 Java
– Just-in-time compilation (blessing & curse)
– Sophisticated optimizations and runtime services for OO language features
– Straying too far from Java semantics can be quite painful
– Implementing a language runtime in vanilla Java is limiting

• Object model trickery
• Implementing Cilk-style workstealing

 C++
– Ahead-of-time compilation (blessing & curse)
– Minimal optimization of OO language features
– Implementing language runtime layer

• Ability to write low-level/unsafe code (flexibility)
• Much fewer built-in services to leverage (blessing & curse)

 Dual path increases effort and constrains language design, but also widens applicability and
creates interesting opportunities

© 2013 IBM Corporation45

Native Runtime

XRX

X10 Runtime

 X10RT (X10 runtime transport)
– active messages, collectives, RDMAs
– implemented in C; emulation layer

 Native runtime
– processes, threads, atomic operations
– object model (layout, rtt, serialization)
– two versions: C++ and Java

 XRX (X10 runtime in X10)
– implements APGAS: async, finish, at
– X10 code compiled to C++ or Java

 Core X10 libraries
– x10.array, io, util, util.concurrent

X10 Application

X10RT

PAMI TCP/IP

X10 Core
Class Libraries

MPI DCMF CUDA

© 2013 IBM Corporation46

XRX: Async Implementation

 Many more logical tasks (asyncs) than execution units (threads)

 Each async is encoded as an X10 Activity object
– async body encoded as an X10 closure
– reference to governing finish
– state: clocks…
– the activity object (or reference) is not exposed to the programmer

 Per-place scheduler
– per-place pool of worker threads
– per-worker deque of pending activities
– cooperative

• activity assigned to one thread from start to finish
• number of threads in pool dynamically adjusted to compensated for blocked activities

– work stealing
• worker processes its pending activities first then steals activity from random coworker

© 2013 IBM Corporation47

XRX: At Implementation

 at (p) async
– source side: synthesize active message

• async id + serialized heap + control state (finish, clocks)
• compiler identifies captured variables (roots)
• runtime serializes heap reachable from roots

– destination side: decode active message
• polling (when idle + on runtime entry)
• new Activity object pushed to worker’s deque

 at (p)
– implemented as “async at” + return message
– parent activity blocks waiting for return message

• normal or abnormal termination (propagate exceptions and stack traces)

 ateach (broadcast)
– elementary software routing

© 2013 IBM Corporation48

XRX: Finish Implementation

 Distributed termination detection is hard
– arbitrary message reordering

 Base algorithm
– one row of n counters per place with n places
– increment on spawn, decrement on termination, message on decrement
– finish triggered when sum of each column is zero

 Basic dynamic optimization
– Assume local, until first at executed
– local aggregation and message batching (up to local quiescence)

© 2013 IBM Corporation49

XRX: Scalable Finish Implementation

 Distributed termination detection is hard
– arbitrary message reordering

 Base algorithm
– one row of n counters per place with n places
– increment on spawn, decrement on termination, message on decrement
– finish triggered when sum of each column is zero

 Basic dynamic optimization
– Assume local, until first at executed
– local aggregation and message batching (up to local quiescence)

 Additional optimizations needed for scaling (@50k Places)
– pattern-based specialization

• local finish, SPMD finish, ping pong, single async
– software routing
– uncounted asyncs
– runtime optimizations + static analysis + pragmas good fit for APGAS

© 2013 IBM Corporation50

Scalable Communication
High-Performance Interconnects

 RDMAs
– efficient remote memory operations
– fundamentally asynchronous good fit for APGAS

• async semantics

Array.asyncCopy[Double](src, srcIndex, dst, dstIndex, size);

 Collectives
– multi-point coordination and communication
– all kinds of restrictions today poor fit for APGAS today

Team.WORLD.barrier(here.id);
columnTeam.addReduce(columnRole, localMax, Team.MAX);

– bright future (MPI-3 and much more…) good fit for APGAS

50

© 2013 IBM Corporation51

Scalable Memory Management

 Garbage collector
– problem 1: distributed heap
– solution: segregate local/remote refs not an issue in practice

• GC for local refs; distributed GC experiment
– problem 2: risk of overhead and jitter
– solution: maximize memory reuse…

 Congruent memory allocator
– problem: not all pages are created equal

• large pages required to minimize TLB misses
• registered pages required for RDMAs
• congruent addresses required for RDMAs at scale

– solution: dedicated memory allocator issue is contained
• configurable congruent registered memory region

backed by large pages if available

only used for performance critical arrays

© 2013 IBM Corporation52

Final Thoughts

 X10 Approach
– Augment full-fledged modern language with core APGAS constructs
– Problem selection: do a few key things well, defer many others
– Enable programmer to evolve code from prototype to scalable solution
– Mostly a pragmatic/conservative language design (except when its not…)

 X10 2.4 (today) is not the end of the story
– A base language in which to build higher-level frameworks (arrays, ScaleGraph, M3R)
– A target language for compilers (MatLab, DSLs)
– APGAS runtime: X10 runtime as Java and C++ libraries
– APGAS programming model in other languages

http://x10-lang.org

© 2013 IBM Corporation53

References

 Main X10 website
http://x10-lang.org

 “A Brief Introduction to X10 (for the HPC Programmer)”
http://x10.sourceforge.net/documentation/intro/latest/html/

 X10 2012 HPC challenge submission
http://hpcchallenge.org
http://x10.sourceforge.net/documentation/hpcc/x10-hpcc2012-paper.pdf

 Unbalanced Tree Search in X10 (PPoPP 2011)
http://dl.acm.org/citation.cfm?id=1941582

 M3R (VLDB 2012)
http://vldb.org/pvldb/vol5/p1736_avrahamshinnar_vldb2012.pdf

http://x10-lang.org/
http://x10.sourceforge.net/documentation/intro/latest/html/
http://hpcchallenge.org/
http://hpcchallenge.org/
http://x10.sourceforge.net/documentation/hpcc/x10-hpcc2012-paper.pdf
http://dl.acm.org/citation.cfm?id=1941582
http://dl.acm.org/citation.cfm?id=1941582
http://dl.acm.org/citation.cfm?id=1941582
http://vldb.org/pvldb/vol5/p1736_avrahamshinnar_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1736_avrahamshinnar_vldb2012.pdf

	Reflections on X10 Towards Performance and Productivity at Scale David Grove IBM TJ Watson Research Center
	Acknowledgments
	Talk Objectives
	Talk Outline
	X10 Genesis: DARPA HPCS Program (2004)
	Programming Model Challenges
	X10 Performance and Productivity at Scale
	Partitioned Global Address Space (PGAS) Languages
	X10 Combines PGAS with Asynchrony (APGAS)
	Concurrency: async and finish
	Atomicity: atomic and when
	Atomicity: atomic and when (and locks)
	Distribution: Places and at
	X10’s Distributed Object Model
	Hello Whole World
	APGAS Idioms
	Outline
	Row Swap from LU Benchmark
	Row Swap from X10 LU Benchmark
	Global Load Balancing
	Global Load Balance: The Lifeline Solution
	Scalable Global Load Balancing Unbalanced Tree Search
	UTS Main Loop
	UTS Handling Thieves
	Slide 25
	X10 At Scale
	DARPA PERCS Prototype (Power 775)
	Eight Benchmarks
	Performance at Scale (Weak Scaling)
	HPCC Class 2 Competition: Best Performance Award
	IBM Mega Traffic Simulator (Megaffic)
	Slide 32
	City Planning Example: What-if Simulation of Sendai City
	Why X10?
	XAXIS Software Stack
	M3R – A Hadoop re-implementation in Main Memory, using X10
	M3R Architecture
	Intuition: Where does M3R gain performance relative to Hadoop?
	Additional X10 Community Applications
	Slide 40
	X10 Target Environments
	X10 Implementation Summary
	X10 Compilation & Execution
	Java vs. C++ as Implementation Substrate
	X10 Runtime
	XRX: Async Implementation
	XRX: At Implementation
	XRX: Finish Implementation
	XRX: Scalable Finish Implementation
	Scalable Communication High-Performance Interconnects
	Scalable Memory Management
	Final Thoughts
	References

