
Directives Based Approaches in an
Exascale Perspective

F. Bodin / Irisa
June 2013
Lyon

Introduction

  HPC and embedded software going for dramatic changes to adapt
to massive parallelism
o  Huge market/programmers issue
o  Many codes and users not ready  directives based approaches
o  Key economical competitive topic

  Performance and energy consumption intimately coupled
o  Looking for code execution time and energy consumption minimization
o  Specialized solutions based on accelerators and co-processors

  Exascale driving the next generation of technologies (and vice
versa)
o  Embedded systems
o  HPC
o  Big data

2 HPC Languages 01/07/13

Extract from CRAY-1 Fortran Reference
Manual, 1978.

01/07/13 HPC Languages 3

OpenMP Directives

  1980-1990
o  Alliant, Convex, Cray, Encore, IBM, Sequent, and others
o  Constructor specific directives
o  About parallel loops
o  Failed to reach a common agreement

  1990  …
o  OpenMP committee
o  Parallel loops and shared memory
o  ANSI X3H5 adopted in 1997

01/07/13 HPC Languages 4

  A proof of concept in 2007
o  targeted toward Fortran users that were not OpenGL fans
o  OpenMP directives has been a previous success
o  Was also targeting FPGA

  Code maintenance was identified as a main issue
o  Only one source code to maintain

  We were looking for a solution that preserves serial code
o  CPU regular code  compiled and used as usual
o  Simplifying debugging
o  Incremental development approach
o  Avoid exit cost

  Needed to be complementary to MPI and OpenMP
o  All targeted applications used one or both of these

HPC Languages 5 01/07/13

The Origin of Directives for Accelerators (HWA) @ CAPS

Programming Model for Accelerators

  Remote Procedure Call

  Express data and computations
to be executed
on an accelerator

01/07/13 HPC Languages 6

Data/stream/vector
parallelism to be

exploited by HWA
e.g. CUDA / OpenCL

CPU and HWA linked with a
PCIx bus

  F2CACC
o  Directives from NOAA  very close to OpenACC parallel regions

  HiCuda
o  Directives from University of Toronto

  OpenACC
o  New initiative from a group of companies

  OpenHMPP
o  CAPS and Pathscale directives

  OpenMP accelerator extension
o  Being defined by OpenMP ARB

  OMPC
o  OpenMP compilation to Cuda (Purdue)

  OpenMP stream-computing extension
o  Directives from Inria (A. Cohen, A. Pop)

  OMPSs
o  Directives from BSC  task graph oriented

  PGI Accelerator
o  PGI proprietary directives style

  R-Stream
o  Reservoir Lab proprietary directives

  …

HPC Languages 7 01/07/13

A Few Directive Based Approaches

Main Design Considerations for CAPS

  Focus on the main bottleneck
o  Communication between GPUs and CPUs

  Allow incremental application development
o  Up to full access to the hardware features

  Work with other parallel API (OpenMP, MPI)
o  Do not oppose GPU to CPU,

  Consider multiple languages
o  Avoid asking users to learn a new language

  Consider resource management
o  Generate robust software

  Exploit HWA constructors programming tools
o  Do not replace, complement

  Take into accounts compilers best capabilities

01/07/13 HPC Languages 8

Limits of Compilers

  Excellent at transforming codes, poor at understanding
semantic and making decisions
o  Lack many data anyway
o  Code execution more sensitive to optimization on heterogeneous

hardware

  Experts invent strategies, not compilers
o  Look at "3D Finite Difference Computation on GPUs using CUDA"

from Paulius Micikevicius, NVIDIA
•  Known code transformations but specific strategy

  Need to provide extra semantic and optimization strategies
o  Specific to each target system and application

HPC Languages 9 01/07/13

  Rely on code generation for implementation details
o  Usually not easy to go from a low level API to another low level one
o  Tuning easier starting from the high level (if not too high)

An example with OpenHMPP

HPC Languages 10 01/07/13

Express Parallelism, not Implementation

HMPP

OpenMP/Threads

Cuda/OpenCL

Vector ISA

Code generation process

N
o autom

atic
translation

#pragma hmppcg gridify(j,i) !
#pragma hmppcg unroll(4), jam(2)!
 for(j = 0 ; j < p ; j++) {!
 for(i = 0 ; i < m ; i++) {!
 for (k = ...) { ...}!
 vout[j][i] = alpha * ...;!
 }!
 }!

CAPS Compilers – Source-to-Source

  CAPS Compilers drives
all compilation passes

  Host application
compilation
o  Calls traditional CPU

compilers
o  CAPS Runtime is linked

to the host part of the
application

  Device code
production
o  According to the

specified target
o  A dynamic library is

built

HPC Languages 11

Fun
#3

C++
Frontend

C
Frontend

Fortran
Frontend

CUDA
Code

Generation

Executable
(mybin.exe)

Instrumen-
tation

module

CPU compiler
(gcc, ifort, …)

CUDA
compilers

HWA Code
(Dynamic

library)

OpenCL
Generation

OpenCL
compilers

Extraction module

Fun
#2

Host
code

codelets

CAPS
Runtime

Fun
#1

01/07/13

Talk Overview

  Accelerator / Co-processor Technology

  OpenACC 1.x and 2.x Directives

  OpenMP 4.0 Accelerator

  OpenACC (and OpenCL) in an Exascale Perspective

HPC Languages 12 01/07/13

Accelerator / Co-processor
Technology

HPC Languages 13

Accelerator/Coprocessor Architectures

  Many architectures
o  GPU based systems: Nvidia Kepler, AMD APU, ARM Mali, …
o  CPU core based systems: Intel Xeon Phi, Kalray MPPA, …

  SIMT based architecture
o  Performance from vector accesses and plenty of threads

  Cache based architecture
o  Performance from caching and vector instructions

  Different address spaces
o  Distributed or shared (APU and embedded systems)

HPC Languages 14 01/07/13

  Heterogeneity is
•  Different parallel models
•  Different ISAs
•  Different compilers
•  Different memory systems
•  Different libraries

  Performance and code migration very dependant on
hardware idiosyncrasies
o  Hardware landscape still very chaotic

HPC Languages 15

Heterogeneous Architectures

01/07/13

Programming Heterogeneous Model

  Native programming languages
o  CUDA / OpenCL
o  OpenCL available almost everywhere

  Directive based API
o  OpenACC, OpenHMPP, PGI Acc, …

•  Intersection of accelerators capabilities
o  OpenMP accelerator extension in two flavors

•  GPU execution model oriented
•  OpenMP execution model oriented

HPC Languages 16 01/07/13

codes need to
move in this space

and new HWs to come

Code Writing Constraints

  A code must be written for a set of hardware configurations
o  6 CPU cores + Intel Xeon Phi
o  24 CPU cores + AMD GPU / Nvidia GPU / …
o  12 cores + 2 GPUs
o  AMD APU
o  …

01/07/13 HPC Languages 17

X86 / ARM multi-cores

Intel MIC/KALRAY MPPA NVIDA/AMD/ARM GPUs

Fat cores - OO

Light cores SIMT cores

Compilers and Heterogeneous Hardware

  Compilers are heterogeneous themselves
o  Not one technology fits all

  Want to mix the best compilers to address heterogeneity

HPC Languages 18

CPU compilers
• Intel compilers
• IBM compilers
• ABSoft
• Pathscale
• PGI
• Gcc
• LLVM
• Open64
• …

Accelerator compilers
• Nvidia Cuda compiler
• Intel OpenCL
• AMD OpenCL
• ARM OpenCL
• Kalray compilers
• …

x86
ARM
MIPS
PowerPC
…

x86
PTX
HSA
Kalray MPPA Isa
…

01/07/13

OpenACC Directives

HPC Languages 19

OpenACC Initiative

  A CAPS, CRAY, Nvidia and PGI initiative
  Open Standard
  A directive-based approach for

programming heterogeneous many-core
hardware for C and FORTRAN applications

  http://www.openacc-standard.com

HPC Languages 20 01/07/13

Parallel Construct

  Starts parallel execution on the accelerator
o  All the region is one accelerator kernel

  Creates gangs/workers/vectors
o  Their numbers remain constant for the parallel region
o  One worker in each gang begins executing the code in the region

HPC Languages 21

#pragma acc parallel […]
{
 …
 for(i=0; i < n; i++) {
 for(j=0; j < n; j++) {
 …
 }
 }
 …
}

Code executed on the hardware
accelerator

01/07/13

Kernels Construct

  Defines a region of code to be compiled into a sequence of
accelerator kernels
o  Typically, each loop nest will be a distinct kernel
o  The number of gangs and workers can be different for each kernel

HPC Languages 22

#pragma acc kernels […]
{
 for(i=0; i < n; i++) {
 …
 }
 …
 for(j=0; j < n; j++) {
 …
 }
}

$!acc kernels […]

 DO i=1,n
 …
 END DO
 …
 DO j=1,n
 …
 END DO

$!acc end kernels

1st Kernel

2nd Kernel

01/07/13

Execution Model

  Among a bulk of computations executed by the CPU, some
regions can be offloaded to hardware accelerators
o  Parallel regions
o  Kernels regions

  Host is responsible for
o  Allocating memory space on accelerator
o  Initiating data transfers
o  Launching computations
o  Waiting for completion
o  Deallocating memory space

  Accelerators execute parallel regions
o  Use work-sharing directives
o  Specify level of parallelization

HPC Languages 23 01/07/13

OpenACC Execution Model

  Host-controlled execution
  Based on three parallelism levels

o  Gangs – coarse grain (e.g. distribution on multiprocessors)
o  Workers – fine grain (e.g. inside a multiprocessor)
o  Vectors – finest grain

HPC Languages 24

Device

Gang
Worker

Vector
s

Gang
Worker

Vector
s

…

01/07/13

Gangs, Workers, Vectors

  In CAPS Compilers, gangs, workers and vectors correspond
to the following in a CUDA grid

  Beware: this implementation is compiler-dependent

HPC Languages 25

gridDim.y = 1

gridDim.x = number of gangs

blockDim.y =
number of
workers

blockDim.x = number of vectors

01/07/13

HPC Languages 26 01/07/13

Code Generation
Iteration spaces
distribution

Virtual to physical
machine mapping

Gang
workers

Gang
workers

Gang
workers

Gang
workers

vectors

Stream Multi-Processor

GPU
thread

GPU
thread

GPU
thread …

Physical machine

Virtual machine

#pragma acc loop gang(NB)!
 for (int i = 0; i < n; ++i){!
 #pragma acc loop worker(NT)!
 for (int j = 0; j < m; ++j){ !
 B[i][j] = i * j * A[i][j];!
 }!
 }!

compiler dep.

HPC Languages 27 01/07/13

Iterations Mapping
#pragma acc loop gang(2)!
for (i=0; i<n; i++){!
#pragma acc loop worker(2)!
 for (j=0;j<m;j++){!
 iter(j,j);!
 }!
}!

for (i=0; i<n/2; i++){!
 for (j=0;j<m;j++){!
 iter(i,j);!
 }!
}!

for (i=n/2+1; i<n; i++){!
 for (j=0;j<m;j++){!
 iter(i,j);!
 }!
}!

for (i=0; i<n/2; i++){!
 for (j=0;j<m;j+=2){!
 iter(i,j);!
 }!
}!

for (i=0; i<n/2; i++){!
 for (j=1;j<m;j+=2){!
 iter(i,j);!
 }!
}!

Gang 0 Gang 1

Gang 0, Worker 0 Gang 0, Worker 1
.

Distribution scheme is compiler dependant (here simplified scheme)

Device Memory Reuse

  In this example
o  A and B are allocated

and transferred for the
first kernels region

o  A and C are allocated
and transferred for the
second kernels region

  How to reuse A
between the two
kernels regions?
o  And save transfer and

allocation time

HPC Languages 28

float A[n];

#pragma acc kernels
{
 for(i=0; i < n; i++) {
 A[i] = B[n – i];
 }
}
…
init(C)
…
#pragma acc kernels
{
 for(i=0; i < n; i++) {
 C[i] += A[i] * alpha;
 }
}

01/07/13

OpenACC Data Regions

  OpenACC data are basically equivalent to HMPP mirrors

  But managed using data regions instead of standalone directives

01/07/13 HPC Languages 29

 REAL :: X(100), Y(100)

 !$acc data create(Y) copyin(X)
 …

 !$acc parallel

 … work on X and Y

 !$acc end parallel

 !$acc update host(Y)

 !$acc end data

  Create Y on the device

  Create and send X to the device

  Implicit DATA region with
 → implied present(X,Y)

  Work on X and Y on the device

  Explicitly receive Y from the device

  Free X and Y on the device

Memory Allocations

  Avoid data reallocation using the create clause
o  It declares variables, arrays or subarrays to be allocated in the device

memory
o  No data specified in this clause will be copied between host and

device

  The scope of such a clause corresponds to a data region
o  Data regions are used to define such scopes (as is, they have no

effect)
o  They define scalars, arrays and subarrays to be allocated on the

device memory for the duration of the region

  Kernels and Parallel regions implicitly define data regions

HPC Languages 30 01/07/13

Data Presence

  How to tell the compiler that data has already been
allocated?

  The present clause declares data that are already present on
the device
o  Thanks to data region that contains this region of code

  Runtime will find and use the data on device

HPC Languages 31 01/07/13

Data Construct: Create and Present Clause

HPC Languages 32

float A[n];

#pragma acc data create(A)
{
 #pragma acc kernels present(A)
 {
 for(i=0; i < n; i++) {
 A[i] = B[n – i];
 }
 }
 …
 init(C)
 …
 #pragma acc kernels present(A)
 {
 for(i=0; i < n; i++) {
 C[i] += A[i] * alpha;
 }
 }
}

Allocation of A of size n on the
device

Deallocation of A on the device

Reuse of A already allocated on
the device

Reuse of A already allocated on
the device

01/07/13

Data Storage: Mirroring

  How is the data stored in a data region?
  A data construct defines a section of code where data are mirrored between host and

device
  Mirroring duplicates a CPU memory block into the HWA memory

o  The mirror identifier is a CPU memory block address
o  Only one mirror per CPU block
o  Users ensure consistency of copies via directives

HPC Languages 33

Host Memory

Master copy ………
………
………
………
………
………
……. HWA Memory

CAPS RT
Descriptor

………
………
………
………
………
………
…….

Mirror copy

01/07/13

Asynchronism

  By default, the code on the
accelerator is synchronous
o  The host waits for

completion of the parallel or
kernels region

  The async clause enables to
use the device while the
host process continues with
the code following the
region

  Can be used on parallel and
kernels regions and update
directives

HPC Languages 34

CPU HWA

1
2

3

4

5

CPU HWA

1
2

3

4

5

01/07/13

Wait Directive

  Causes the program to wait for an asynchronous activity
o  Parallel, kernels regions or update directives

  An identifier can be added to the async clause and wait directive:
o  Host thread will wait for the asynchronous activities with the same ID

  Without any identifier, the host process waits for all asynchronous
activities

HPC Languages 35

#pragma acc kernels, async
{
 …
}
#pragma acc kernels, async
{
 …
}
#pragma acc wait

$!acc kernels, async 1
 …
$!acc end kernels
 …
$!acc kernels, async 2
 …
$!acc end kernels
 …
$!acc wait 1

01/07/13

OpenACC 2.0

  OpenACC 2.0 is not officially available
o  A public draft can be downloaded from the OpenACC web site

•  http://www.openacc-standard.org/
o  This is still a work in progress.
o  The features described here show the current state as of April'13

•  Could be slightly different from the latest draft
o  Final version within a few months

01/07/13 HPC Languages 36

Summary of new features

  Clarifications of the 1.0 specification & new terminology
  New routine directive
  New device_type clause
  Better asynchronous behavior
  New enter data and exit data directives
  New link clause for the declare directive
  Loop Tiling
  Nested parallelism
  Several new API calls
  ...

01/07/13 HPC Languages 37

!$acc parallel
 !$acc loop worker
 DO i=1,n
 !$acc loop gang
 DO j=1,m
 A(i,j) = 0
 ENDDO
 ENDDO
!$acc end parallel

This code is not
legal anymore!

Clarifications (1)

  Gang, Worker and Vector shall appear in that order and at
most once!
o  Parallel resources are created by the PARALLEL directive

•  worksharing is theoretically possible in all orders
o  But that was confusing for most users (even for advanced ones)
o  Some levels may still be omitted (e.g. gang & vector is still legal)

01/07/13 HPC Languages 38

This code is not what it seems!

The reduction variable s
does not contain the whole

sum after the first loop

No global synchronization
in a parallel region

Clarifications (2)

  Reductions at gang level
o  The reduction clauses on PARALLEL or on LOOP GANG directives

are equivalent
o  Each gang computes one partial value.
o  The final reduction occurs after the whole parallel region

01/07/13 HPC Languages 39

!$acc parallel
 s = 0
 !$acc loop gang reduction(+:sum)
 DO i=1,n
 s = s + A(i)
 ENDDO
 !$acc loop gang
 DO i=1,n
 B(i) = B(i) + s
 ENDDO
!$acc end parallel

New terminology (1)

  The execution model is quite complex with its 3 optional levels of
worksharing (gang, worker & vector)

  A new terminology was needed to describe the behavior at all
levels of worksharing
o  The program starts in gang-redundant mode (GR mode) but

enters gang-partitioned mode (GP mode) within a loop gang
•  In GR mode, all gangs execute the same code
•  In GP mode, each gang executes a private subset of the loop iterations

o  The program starts in worker-single mode (WS mode) but
enters worker-partitioned mode (WP mode) within a loop worker

•  In WS mode, only one worker is active per gang
•  In WP mode, each worker executes a private subset of the loop iterations

o  The program start in vector-single mode (VS mode) but
enters vector-partitioned mode (VP mode) within a loop vector

•  In VS mode, only one vector lane is active per gang
•  In VP mode, each vector lane executes a private subset of the loop iterations

01/07/13 HPC Languages 40

!$acc parallel private(tmp) num_gangs(16), num_workers(8),
vector_length(32)

 tmp=42 ! GR+WS+VS

 !$acc loop gang
 DO i=1,n
 A(i) = A(i)+tmp ! GP+WS+VS
 !$acc loop worker
 DO j=1,m
 B(i,j)=B(i,j)+tmp ! GP+WP+VS
 !$acc loop vector
 DO k=1,p
 C(i,j,k)=C(i,j,k) ! GP+WP+VP
 ENDDO
 ENDDO
 ENDDO

!$acc end parallel

GR=Gang-Redundant GP=Gang-Partitioned
WS=Worker-Single WP=Worker-Partitioned
VS=Vector-Single VP=Vector-Partitioned

Gang-Worker-Vector Terminology Example

01/07/13 HPC Languages 41

Example of a Complex Loop Nest Parallelization
  Extract from NOAA Nonhydrostatic Icosahedral Model (NIM)

code

OpenACC Bof SC
2012 www.caps-entreprise.com 42

!$acc parallel present(nprox,prox,u,...) vector_length(1) num_workers(64) num_gangs(512) !
!$acc loop gang private (rhsu,...) private(ipn,k,isn,...)!
do ipn=ips,ipe!
 n = nprox(ipn)!
 ipp1 = prox(1,ipn)!
 ...!
!$acc loop worker vector !
 do k=1,nz-1!
 rhsu(k,1) = cs(1,ipn)*u(k ,ipp1)...!
 ...!
 enddo !k-loop!
 k=nz-1!
 rhsu(k+1,1) = cs(1,ipn)*u(k ,ipp1)...!
 ...!
!$acc loop worker vector private(wk)!
 do k=1,nz!
 Lots of statements!
 enddo !k-loop!
!$acc loop seq!
 do isn = 1,nprox(ipn)!
!$acc loop worker vector !
 do k=1,nz-1 !
 Tgtu(k,isn) = ...!
 enddo !k-loop!
 Tgtu(nz,isn) = 2.*Tgtu(nz-1,isn) - ...!
 end do ! isn-loop!
(continued on next page) !

(continued from previous page) !
!$acc loop seq!
 do isn = 1,nprox(ipn)!
 isp=mod(isn,nprox(ipn))+1!
!$acc loop worker vector !
 do k = 2,nz-1!
 ...!
 end do ! k -loop!
 sedgvar(1,isn,ipn,1)=(zm(1,ipn)...!
 ...!
 end do ! isn-loop!
!$acc loop worker vector!
 do k=1,nz!
 kp1=min(nz,k+1)!
 ...!
 end do!
 bedgvar(0,ipn,1)=...!
enddo !ipn-loop!
!$acc end parallel!

!$acc parallel
 CALL foo(A)
 !$acc loop gang
 DO i=1,n
 CALL foo(A)
 !$acc loop worker
 DO j=1,m
 CALL foo(A)
 ENDDO
 ENDDO
!$acc end parallel

SUBROUTINE foo(A)
 REAL ::
A(1000)
 INTEGER :: k
 !$acc loop
 DO k=1,1000
 A(k) = 0
 ENDDO
END SUBROUTINE foo

  Determining worksharing
the k-loop?

  If foo is inlined: easy
  If foo is not inlined: ?

The ROUTINE Directive (1)

  Users want to make procedure calls from within ACC regions
  Not officially supported by OpenACC 1.0

o  But implemented by vendors with some constraints (e.g. using inlining)

  The caller and the callee should agree on the worksharing

01/07/13 HPC Languages 43

  Annotate the procedure interface or implementation

  Use one of the clauses gang, worker, vector or seq to control the
valid level of worksharing
o  That information is used by both the caller and the caller (should be

consistant)
o  If gang then the procedure may contain gang, worker or vector

worksharing and is callable from gang-redundant mode (GR)
o  If worker then the procedure may contain worker or vector worksharing

and is callable from worker-single mode (WS)
o  If vector then the procedure may contain vector worksharing and is

callable from vector-single mode (VS)
o  If seq then the procedure contains no worksharing and is callable from

anywhere (i.e. pure sequential)

!$acc routine [clause]
SUBROUTINE foo(A)
 ...
END SUBROUTINE foo

The ROUTINE Directive (2)

01/07/13 HPC Languages 44

!$acc parallel
 CALL foo(A) ! valid
 !$acc loop gang
 DO i=1,n
 CALL foo(A) ! valid
 !$acc loop worker
 DO j=1,m
 CALL foo(A) ! invalid
 ENDDO
 ENDDO
!$acc end parallel

!$acc routine worker
SUBROUTINE foo(A)
 REAL :: A(1000)
 INTEGER :: k
 !$acc loop worker
 DO k=1,1000
 A(k) = 0
 ENDDO
END SUBROUTINE foo

The ROUTINE Directive (3)

01/07/13 HPC Languages 45

INTERFACE
 !$acc routine worker dtype(cuda) bind(”foo_cuda_worker”)
 SUBROUTINE foo(A)
 REAL A(*)
 END SUBROUTINE foo
END INTERFACE

The ROUTINE Directive (4)

  The BIND clause
o  Change the physical name of the procedure
o  Work as BIND in Fortran but takes a string or an identifier as

argument.
o  Can be used in conjunction with the DEVICE_TYPE clause to call

hand-written specialized versions (e.g. in CUDA)

01/07/13 HPC Languages 46

Loop Tiling (1)

  The new TILE clause on the LOOP directive allows to tile the
loop nest before applying worksharing

  Each loop in a tightly nested loop nest is decomposed into
o  An outer tile loop
o  An inner element loop

  If requested, gang worksharing is applied to the collapsed
outer tile loops

  If requested, vector worksharing is typically applied to the
collapsed inner element loops

  If requested, worker worksharing is applied to
o  the outer tile loops if vector worksharing is also requested
o  or to the inner element loops otherwise

01/07/13 HPC Languages 47

!$acc loop gang worker tile(8,12)
DO i=1,m
 DO j=1,n
 B(i,j)=A(i+1,j)+A(i,j+1)+...
 ENDDO
ENDDO

!$acc loop gang collapse(2)
DO i0=1,m,8
 DO j0=1,n,12
 !$acc loop worker collapse(2)
 DO i=i0,i0+7
 DO j=j0,j0+11
 B(i,j)=A(i+1,j)+A(i,j
+1)+...
 ENDDO
 ENDDO
 ENDDO
ENDDO

LOOP Tiling Example (2)

  For simplicity, let's assume that m is a multiple of 8 and n is
a multiple of 12

01/07/13 HPC Languages 48

OpenMP Accelerator Directives

HPC Languages 49

OpenMP Views: Two kinds of architectures

#1 - The accelerator is just another computer
o  e.g. Intel MIC, TI DSPs , …
o  It runs a fairly complete Operating System (e.g. Linux, ...)

•  Applications, Threads, Simple Memory Layout, SIMD instructions, …
o  Full OpenMP can be or is already implemented on that device

 #2 - The accelerator is designed for performance
o  e.g. NVIDIA, AMD, ARM GPUs
o  No real operating system but a programming API (e.g. CUDA,

OpenCL, …)
•  Kernels, Complex Memory Layout, Coalescing, ...

o  OpenMP cannot be fully implemented on the device
•  at least not efficiently

01/07/13 HPC Languages 50

!$omp target
 !$omp parallel num_threads(100)
 !$omp do
 DO i=1,n
 A(i) = compute(i)
 ENDDO
 !$omp barrier
 !$omp do
 DO i=1,n
 B(i) = A(i) + A(n-i-1)
 ENDDO
 !$omp end parallel
!$omp end target

The TARGET directive

  Specify that a piece of
code is executed on
the device

  All OpenMP directives
shall be allowed within
the target code

01/07/13 HPC Languages 51

TARGET - TEAMS - DISTRIBUTE (1)

  The target clause does not work well on GPUs
o  OpenMP cannot be fully implemented on the device

  A new level of parallelism was introduced: team
o  A team is basically equivalent to a CUDA thread-block or an OpenCL

workgroup.
o  A new directive TEAMS to create a group of teams

•  A team allocates its resources (i.e. max number of threads) when it is
created

o  No barriers, atomics, critical sections, … across teams

  A new directive DISTRIBUTE to distribute loop iterations
over the current group of teams
o  Similar to the DO and FOR directive

01/07/13 HPC Languages 52

  TARGET, TEAMS and DISTRIBUTE shall be perfectly nested
o  … in the current proposal! that may change in a later version
o  There is also a combined directive

  Inside the TARGET-TEAM-DISTRIBUTE use OpenMP directives to
operate on the threads allocated for the current team.

!$omp target …
 !$omp teams num_teams(100) num_threads(16)
 !$omp distribute
 DO i=1,n
 !$omp parallel do num_threads(20)
 DO j=1,m
 A(i,j) = compute(i,j)
 ENDDO
 ENDDO
 !$omp end teams
!$omp end target

Hoops! There are
only 16 threads in the
current team

TARGET - TEAMS - DISTRIBUTE (2)

01/07/13 HPC Languages 53

TEAMS or not TEAMS?

  The TARGET-TEAMS-DISTRIBUTE model can theoretically
be implemented on any target with OpenCL support.
o  Will it be implemented on Intel-MIC?

•  Teams are part of the spec so yes … in theory

  The TARGET model cannot be implemented on GPU
o  Could use a single team (i.e. one CUDA block) but that would be

inefficient

  If you want portability
o  Use the TARGET-TEAMS-DISTRIBUTE model

  If you want maximum performances on some devices such
as the Intel-MIC
o  Use the TARGET model

01/07/13 HPC Languages 54

!$omp target data map(alloc:W) map(to:X) map(from:Y) map(tofrom:Z)

 ! W, X, W, Z are now mapped on the device
 …
 ! tThe following code still executes on the host
 …

!$omp end target data

!$acc data create(W) copyin(X) copyout(Y) copy(Z)

Data Management (1)

  Inspired from OpenACC
o  But with a different terminology

  The OMP TARGET DATA construct
o  Allocate and copy data to or from the device
o  Comparable to the ACC DATA construct

01/07/13 HPC Languages 55

  The TARGET UPDATE directive
o  Copy already mapped data to and from the device

  Partial transfers and mapping are possible:
o  Data must be contiguous as in OpenACC and OpenHMPP

!$omp target data map(alloc:W,X,Y,Z)
 …
 !$omp target update to(X,Z)
 …
 !$omp target update from(Y)
 …
!$omp end target data

Data Management (2)

01/07/13 HPC Languages 56

Vectorization – SIMD

  The SIMD directive
o  Applied to a loop
o  Control the vectorization (SSE, AVX, …)
o  Not specific to accelerators
o  Provide vector worksharing of OpenACC
o  Several clauses:

•  safelen(length)
•  linear(list[:linear-step])
•  aligned(list[:alignment])
•  private(list)
•  lastprivate(list)
•  reduction(operator:list)
•  collapse(n)

01/07/13 HPC Languages 57

For the rest …

  Use OpenMP constructs and APIs calls inside the TARGET
constructs
o  OMP CRITICAL
o  OMP BARRIER
o  OMP PARALLEL
o  OMP DO
o  OMP TASKS
o  ...

  Is it realistic to implement the whole OpenMP specification
on the accelerator?
o  Intel, TI, and a few other accelerator vendors seem to think so
o  NVIDIA? AMD? …

01/07/13 HPC Languages 58

OpenACC and Extreme Computing

HPC Languages 59

  Exascale architectures may be
o  Massively parallel
o  Heterogeneous compute units
o  Hierarchical memory systems
o  Unreliable
o  Asynchronous
o  Very energy saving oriented
o  …

  Exascale roadmap needs to be build on programming standards
o  Nobody can afford re-writing applications again and again
o  Exascale roadmap, HPC, mass market many-core and embedded systems are sharing many

common issues
o  Exascale is not about an heroic technology development
o  Exascale project must provide technology for a large industry base/uses

  OpenACC and OpenCL may be candidates
o  Dealing with inside the node
o  Part of a standardization initiative
o  OpenACC complementary to OpenCL

OpenACC (and OpenCL) in an Exascale Perspective

WSTOOLS 2012 60 www.caps-entreprise.com

HPC Languages 61 01/07/13

http://www.etp4hpc.eu

Exascale Programming Environment
 Technological Challenges

  (1) Parallel programming APIs

  Runtime support/systems

  (2) Debugging and correctness

  (3) High performance libraries and components

  Performance tools

  Tools infrastructure

  (4) Cross cutting issues

01/07/13 HPC Languages 62

Discussed in the remainder

Topic extracted from the
etp4hpc SRA programming environment
http://www.etp4hpc.eu

1.  Domain specific languages
2.  API for legacy codes
3.  MPI + X approaches
4.  Partitioned Global Address Space (PGAS) languages and

APIs
5.  Dealing with hardware heterogeneity
6.  Data oriented approaches and languages
7.  Auto-tuning API
8.  Asynchronous programming models and languages

(1) Parallel Programming APIs Topics

01/07/13 63 HPC Languages

  OpenACC
o  Directive based approaches particularly suited to legacy codes
o  Focused on heterogeneous node
o  Not C only targets also Fortran and C++

  OpenCL
o  Not that convenient for legacy codes
o  Complex to mix with OpenMP
o  Can be used to unify multithreading

HPC Languages 64 01/07/13

1-2 API for Legacy Codes Topics

  OpenACC
o  Complementary to MPI
o  Complex to mix with OpenMP, i.e. balancing the load over the CPUs

and accelerators
o  OpenACC to deal with threads and accelerator parallelism  but

parallelism expression not for all applications

  OpenCL
o  idem

HPC Languages 65 01/07/13

1-3 MPI + X Approaches

1-5 Dealing with Hardware Heterogeneity

  OpenACC
o  Designed for this
o  May simplify code tuning
o  No automatic load balancing over the heterogeneous units, need to be extended
o  Better understanding of the code by the compiler (e.g. exposed data management,

parallel nested loops)
•  Provide restructuring capabilities

o  May be extended to consider non volatile memories (NVM)
o  Does not consider multiple accelerators

•  Extension to come

  OpenCL
o  Designed for this
o  Code tuning exposes many low level details
o  Detailed API for resources management

•  Gives many control to users
•  Programming may be complex

o  Interesting parallel model to help vectorization

01/07/13 HPC Languages 66

1-7 Auto-tuning API

  Targeting performance portability issues
  What would provide an auto-tuning API?

o  Decision point description
•  e.g. callsite

o  Variants description
•  Abstract syntax trees
•  Execution constraints (e.g. specialized codelets)

o  Execution context
•  Parameter values
•  Hardware target description and allocation

o  Runtime control to select variants or drive runtime code generation
  OpenACC

o  OpenACC gives more opportunity to compilers/automatic tools
o  Can be extended to provide a standard API
o  Many tuning techniques over parallel loops
o  Orthogonal to programming

  OpenCL
o  Can integrate auto-tuning but may be limited in scope
o  OpenCL is low level, guessing high level properties difficult

01/07/13 HPC Languages 67

  OpenACC
o  Limited asynchronous capabilities, constraints by the host-accelerator

model
o  Not suited for data flow approaches, need to be extended

(OpenHMPP codelet concept more suitable for this)

  OpenCL
o  idem

HPC Languages 68 01/07/13

1-8 Asynchronous Programming Models and
Languages

1.  Debugging heterogeneous/hybrid codes
2.  Static debugging
3.  Dynamic debugging
4.  Debugging highly asynchronous parallel code at full

(Peta-,Exa-)scale
5.  Runtime and debugger integration
6.  Model aware debugging
7.  Automatic techniques

(2) Debugging and Correctness Topics

01/07/13 69 HPC Languages

  OpenACC
o  Preserve most of the serial semantic, helps a lot to design debugging

tools
o  Helps to distinguish serial bugs from parallel ones
o  Programming can be very incremental, simplifying debugging

  OpenCL
o  Complex debugging due to many low level details and parallel /

memory model

HPC Languages 70 01/07/13

2-1 Debugging Heterogeneous/Hybrid Codes

1.  Application componentization
2.  Templates/skeleton/component based approaches and

languages
3.  Components / library interoperability
4.  Self- / auto-tuning libraries and components
5.  New parallel algorithms / parallelization paradigms; e.g.

resilient algorithms

(3) High Performance Libraries and Components Topics

01/07/13 71 HPC Languages

3-2 Templates/skeleton/component Based Approaches and
Languages

  OpenACC
o  Can be used to write libraries, can exploit already allocated data/HW

(pcopy clause)
o  If extended with tuning directives such as hmppcg (e.g. loop

transformations) can be used to express templates:
•  Templates to express static code transformations
•  Use runtime technique to tune dynamic parameters such as the number

of gangs, workers and vector sizes

  OpenCL
o  Used a lot to write libraries
o  Fits well with C++ components development

01/07/13 HPC Languages 72

  Library calls can usually only be partially replaced
o  Want a unique source code even when using accelerated libraries, CPU version is the

reference point
o  No one-to-one mapping between libraries (e.g.BLAS  Cublas, FFTW  CuFFT)
o  No access to all application codes (i.e. need to keep the CPU library)

  Deal with multiple address spaces / multi-HWA
o  Data location may not be unique (copies, mirrors)
o  Usual library calls assume shared memory
o  Library efficiency depends on updated data location (long term effect)

  OpenACC
o  Needs to interact with users codes, currently limited to sharing the device data ptr
o  Missing automatic data management allocation (e.g. StarPU) to deal with computation migrations

(needed to adapt to hardware resources and compute load)

  OpenCL
o  OpenACC and OpenCL have to interact efficiently
o  API can easily be normalized thanks to standardization initiative

HPC Languages 73 01/07/13

3-3 Components / Library Interoperability

3-4 Self- / Auto-tuning Libraries and Components

  OpenACC
o  Already provided dynamic

parameters for code
tuning (e.g. #workers)

o  Need to be extended to
allow code templates/
skeletons descriptions

  OpenCL
o  Maybe not the right level,

a bit too low level
o  Except for vectorization

techniques

01/07/13 HPC Languages 74

select variant

codelet variant 1

Execution
feedback

codelet variant 2

codelet variant 3

codelet variant …

HMPP
compiler

dy
na

m
ic

1.  Standardization initiative
2.  Fault tolerance at programming level
3.  Programming energy consumption control
4.  Tools interfaces and public APIs
5.  Intellectual property issues
6.  Performance portability issues
7.  Software engineering, applications and users expectations
8.  Tools development strategy
9.  Validation: Benchmarks and other mini-apps
10. Co-design (hardware - software; applications -programming

environment)

(4) [Cross cutting issues]

01/07/13 75 HPC Languages

  OpenACC
o  OpenACC data region can be extended to mark structures for

specific fault tolerance management
o  Extension of the memory model for NVM, etc.

  OpenCL
o  Data management via the API makes it difficult for static tools (e.g.

compiler, analyzer)

HPC Languages 76 01/07/13

4-2 Fault Tolerance at Programming Level

  OpenACC
o  Extremely important to have exascale good representative

measurements
o  Kernels are not enough
o  Tools are usually designed to match benchmark requirement

•  Very influential of the output
o  Mini-apps (e.g. Hydro/Prace, Mantevo) pragmatic and efficient approach

•  But extremely expensive to design
•  Must be production quality
•  Need to exhibit extremely scalable algorithms

o  On the critical path for the foundation of an exascale platform
  OpenCL

o  Idem
o  Limited to C

HPC Languages 77 01/07/13

4-9 Validation: Benchmarks and other mini-apps

  OpenACC/OpenMP provide interesting frameworks for
designing an Exascale, non revolutionary, programming
environment for heterogeneous systems
o  Leverage existing academic and industrial initiative
o  May be used as a basic infrastructure for higher level approach
o  Mixable with MPI, PGAS, …
o  Available on many hardware targets
o  OpenCL very complementary as a device basic programming layer

  OpenACC and OpenMP technologies are still to evolve a lot
as the architecture landscape stabilizes

HPC Languages 78 01/07/13

Conclusion

Accelerator Programming model

Directive-based programming

Parallel Computing

OpenHMPP OpenACC GPGPU

Many-Core programming

Parallelization

HPC
OpenCL

Code speedup NVIDIA CUDA

High Performance Computing

CAPS Compilers

CAPS Workbench
Portability

Performance

Visit CAPS Website:
www.caps-entreprise.com

01/07/13 79 HPC Languages

