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Introduction 

  HPC and embedded software going for dramatic changes to adapt 
to massive parallelism 
o  Huge market/programmers issue 
o  Many codes and users not ready  directives based approaches 
o  Key economical competitive topic 

  Performance and energy consumption intimately coupled 
o  Looking for code execution time and energy consumption minimization 
o  Specialized solutions based on accelerators and co-processors 

  Exascale driving the next generation of technologies (and vice 
versa) 
o  Embedded systems 
o  HPC 
o  Big data  
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Extract from CRAY-1 Fortran Reference 
Manual, 1978.  
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OpenMP Directives 

  1980-1990   
o  Alliant, Convex, Cray, Encore, IBM, Sequent, and others  
o  Constructor specific  directives 
o  About parallel loops 
o  Failed to reach a common agreement 

  1990  … 
o  OpenMP committee 
o  Parallel loops and shared memory 
o  ANSI X3H5 adopted in 1997 
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  A proof of concept in 2007 
o  targeted toward Fortran users that were not OpenGL fans 
o  OpenMP directives has been a previous success 
o  Was also targeting FPGA 

  Code maintenance was identified as a main issue 
o  Only one source code to maintain 

  We were looking for a solution that preserves serial code 
o  CPU regular code  compiled and used as usual 
o  Simplifying debugging 
o  Incremental development approach 
o  Avoid exit cost 

  Needed to be complementary to MPI and OpenMP 
o  All targeted applications used one or both of these 
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The Origin of Directives for Accelerators (HWA)  @ CAPS 



Programming Model for Accelerators 

  Remote Procedure Call 

  Express data and computations  
to be executed  
on an accelerator 
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Data/stream/vector 
parallelism to be 

exploited by HWA 
e.g. CUDA / OpenCL 

CPU and HWA linked with a 
PCIx bus 



  F2CACC 
o  Directives from NOAA  very close to OpenACC parallel regions 

  HiCuda 
o  Directives from University of Toronto 

  OpenACC 
o  New initiative from a group of companies 

  OpenHMPP 
o  CAPS and Pathscale directives  

  OpenMP accelerator extension 
o  Being defined by OpenMP ARB 

  OMPC 
o  OpenMP compilation to Cuda (Purdue) 

  OpenMP stream-computing extension  
o  Directives from Inria (A. Cohen, A. Pop) 

  OMPSs 
o  Directives from BSC  task graph oriented 

  PGI Accelerator 
o  PGI proprietary directives style 

  R-Stream 
o  Reservoir Lab proprietary  directives 

  … 
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A Few Directive Based Approaches 



Main Design Considerations for CAPS 

  Focus on the main bottleneck 
o  Communication between GPUs and CPUs 

  Allow incremental application development 
o  Up to full access to the hardware features 

  Work with other parallel API (OpenMP, MPI) 
o  Do not oppose GPU to CPU, 

  Consider multiple languages 
o  Avoid asking users to learn a new language 

  Consider resource management 
o  Generate robust software 

  Exploit HWA constructors programming tools 
o  Do not replace, complement 

  Take into accounts compilers best capabilities 
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Limits of Compilers 

  Excellent at transforming codes, poor at understanding 
semantic and making decisions 
o  Lack many data anyway 
o  Code execution more sensitive to optimization on heterogeneous 

hardware 

  Experts invent strategies, not compilers 
o  Look at "3D Finite Difference Computation on GPUs using CUDA" 

from Paulius Micikevicius, NVIDIA 
•  Known code transformations but specific strategy 

  Need to provide extra semantic and optimization strategies 
o  Specific to each target system and application 
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  Rely on code generation for implementation details 
o  Usually not easy to go from a low level API to another low level one 
o  Tuning easier starting from the high level (if not too high) 

An example with OpenHMPP 
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Express Parallelism, not Implementation 

HMPP 

OpenMP/Threads 

Cuda/OpenCL 

Vector ISA 

Code generation process 

N
o autom

atic 
translation 

#pragma hmppcg gridify(j,i) !
#pragma hmppcg unroll(4), jam(2)!
  for( j = 0 ; j < p ; j++ ) {!
    for( i = 0 ; i < m ; i++ ) {!
     for (k = ...) { ...}!
      vout[j][i] = alpha * ...;!
    }!
  }!



CAPS Compilers – Source-to-Source 

  CAPS Compilers drives 
all compilation passes 

  Host application 
compilation 
o  Calls traditional CPU 

compilers 
o  CAPS Runtime is linked 

to the host part of the 
application 

  Device code 
production 
o  According to the 

specified target 
o  A dynamic library is 

built 
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Fun 
#3 

C++ 
Frontend 

C 
Frontend 

Fortran 
Frontend 

CUDA 
Code 

Generation 

Executable 
(mybin.exe) 

Instrumen-
tation 

module 

CPU compiler  
(gcc, ifort, …) 

CUDA 
compilers 

HWA Code  
(Dynamic 

library) 

OpenCL 
Generation 

OpenCL 
compilers 

Extraction module 

Fun 
#2 

Host 
code 

codelets 

CAPS 
Runtime 

Fun 
#1 
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Talk Overview 

  Accelerator / Co-processor Technology 

  OpenACC 1.x and 2.x Directives 

  OpenMP 4.0 Accelerator 

  OpenACC (and OpenCL) in an Exascale Perspective 
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Accelerator / Co-processor 
Technology 
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Accelerator/Coprocessor Architectures 

  Many architectures 
o  GPU based systems: Nvidia Kepler, AMD APU, ARM Mali, … 
o  CPU core based systems: Intel Xeon Phi, Kalray MPPA, … 

  SIMT based architecture 
o  Performance from vector accesses and plenty of threads 

  Cache based architecture 
o  Performance from caching and vector instructions 

  Different address spaces 
o  Distributed or shared (APU and embedded systems) 
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  Heterogeneity is 
•  Different parallel models 
•  Different ISAs 
•  Different compilers 
•  Different memory systems 
•  Different libraries 

  Performance and code migration very dependant on 
hardware idiosyncrasies  
o  Hardware landscape still very chaotic 
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Heterogeneous Architectures 
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Programming Heterogeneous Model 

  Native programming languages 
o  CUDA / OpenCL 
o  OpenCL available almost everywhere 

  Directive based API 
o  OpenACC, OpenHMPP, PGI Acc, … 

•  Intersection of accelerators capabilities 
o  OpenMP accelerator extension in two flavors 

•  GPU execution model oriented 
•  OpenMP execution model oriented 
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codes need to 
move in this space  

and new HWs to come  

Code Writing Constraints 

  A code must be written for a set of hardware configurations 
o  6 CPU cores + Intel Xeon Phi 
o  24 CPU cores  + AMD GPU / Nvidia GPU / … 
o  12 cores + 2 GPUs 
o  AMD APU 
o  … 
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X86 / ARM multi-cores 

Intel MIC/KALRAY MPPA NVIDA/AMD/ARM GPUs 

Fat cores - OO 

Light cores SIMT cores 



Compilers and Heterogeneous Hardware 

  Compilers are heterogeneous themselves 
o  Not one technology fits all 

  Want to mix the best compilers to address heterogeneity 
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CPU compilers 
• Intel compilers 
• IBM compilers 
• ABSoft 
• Pathscale 
• PGI 
• Gcc 
• LLVM 
• Open64 
• … 

Accelerator compilers 
• Nvidia Cuda compiler 
• Intel OpenCL 
• AMD OpenCL 
• ARM OpenCL 
• Kalray compilers 
• … 

x86 
ARM 
MIPS 
PowerPC 
… 

x86 
PTX 
HSA 
Kalray MPPA Isa 
… 
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OpenACC Directives 

HPC Languages 19 



OpenACC Initiative 

  A CAPS, CRAY, Nvidia and PGI initiative 
  Open Standard 
  A directive-based approach for 

programming heterogeneous many-core 
hardware for C and FORTRAN applications 

  http://www.openacc-standard.com 
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Parallel Construct 

  Starts parallel execution on the accelerator 
o  All the region is one accelerator kernel 

  Creates gangs/workers/vectors 
o  Their numbers remain constant for the parallel region 
o  One worker in each gang begins executing the code in the region 
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#pragma acc parallel […] 
{ 
  … 
  for(i=0; i < n; i++) { 
    for(j=0; j < n; j++) { 
      … 
    } 
  } 
  … 
} 

Code executed on the hardware 
accelerator 
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Kernels Construct 

  Defines a region of code to be compiled into a sequence of 
accelerator kernels 
o  Typically, each loop nest will be a distinct kernel 
o  The number of gangs and workers can be different for each kernel 
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#pragma acc kernels […] 
{ 
  for(i=0; i < n; i++) { 
    … 
  } 
  …  
  for(j=0; j < n; j++) { 
    … 
  } 
} 

$!acc kernels […] 

  DO i=1,n 
    … 
  END DO 
  …  
  DO j=1,n 
    … 
  END DO 

$!acc end kernels 

1st  Kernel 

2nd Kernel 

01/07/13 



Execution Model 

  Among a bulk of computations executed by the CPU, some 
regions can be offloaded to hardware accelerators 
o  Parallel regions 
o  Kernels regions 

  Host is responsible for 
o  Allocating memory space on accelerator 
o  Initiating data transfers 
o  Launching computations 
o  Waiting for completion 
o  Deallocating memory space 

  Accelerators execute parallel regions 
o  Use work-sharing directives 
o  Specify level of parallelization 
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OpenACC Execution Model 

  Host-controlled execution 
  Based on three parallelism levels 

o  Gangs – coarse grain (e.g. distribution on multiprocessors) 
o  Workers – fine grain (e.g. inside a multiprocessor) 
o  Vectors – finest grain  
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Device 

Gang 
Worker 

Vector
s 

Gang 
Worker  

Vector
s 

… 
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Gangs, Workers, Vectors 

  In CAPS Compilers, gangs, workers and vectors correspond 
to the following in a CUDA grid 

  Beware: this implementation is compiler-dependent 
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gridDim.y = 1 

gridDim.x = number of gangs 

blockDim.y = 
number of 
workers 

blockDim.x = number of vectors 
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Code Generation 
Iteration spaces  
distribution 

Virtual to physical  
machine mapping 

Gang 
workers 

Gang 
workers 

Gang 
workers 

Gang 
workers 

vectors 

Stream Multi-Processor 

GPU 
thread 

GPU 
thread 

GPU 
thread … 

Physical  machine 

Virtual machine 

#pragma acc loop gang(NB)!
  for (int i = 0; i < n; ++i){!
    #pragma acc loop worker(NT)!
    for (int j = 0; j < m; ++j){ !
      B[i][j] = i * j * A[i][j];!
    }!
  }!

compiler dep. 
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Iterations Mapping 
#pragma acc loop gang(2)!
for (i=0; i<n; i++){!
#pragma acc loop worker(2)!
   for (j=0;j<m;j++){!
     iter(j,j);!
   }!
}!

for (i=0; i<n/2; i++){!
   for (j=0;j<m;j++){!
     iter(i,j);!
   }!
}!

for (i=n/2+1; i<n; i++){!
   for (j=0;j<m;j++){!
     iter(i,j);!
   }!
}!

for (i=0; i<n/2; i++){!
   for (j=0;j<m;j+=2){!
     iter(i,j);!
   }!
}!

for (i=0; i<n/2; i++){!
   for (j=1;j<m;j+=2){!
     iter(i,j);!
   }!
}!

Gang 0 Gang 1 

Gang 0, Worker 0 Gang 0, Worker 1 
. . . . . . 

Distribution scheme is compiler dependant (here simplified scheme) 



Device Memory Reuse 

  In this example 
o  A and B are allocated 

and transferred for the 
first kernels region 

o  A and C are allocated 
and transferred for the 
second kernels region 

  How to reuse A 
between the two 
kernels regions? 
o  And save transfer and 

allocation time 
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float A[n]; 

#pragma acc kernels 
{ 
  for(i=0; i < n; i++) { 
    A[i] = B[n – i]; 
  } 
} 
… 
init(C)  
… 
#pragma acc kernels 
{ 
  for(i=0; i < n; i++) { 
    C[i] += A[i] * alpha; 
  } 
} 
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OpenACC Data Regions 

  OpenACC data are basically equivalent to HMPP mirrors 

  But managed using data regions instead of standalone directives 
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  REAL :: X(100), Y(100)  

  !$acc data create(Y) copyin(X)  
    … 

    !$acc parallel  

      …  work on X and Y  

    !$acc end parallel  

    !$acc update host(Y)  

  !$acc end data  

  Create Y on the device  

  Create and send X to the device 

  Implicit DATA region with  
 → implied present(X,Y) 

  Work on X and Y on the device  

  Explicitly receive Y from the device 

  Free X and Y on the device 



Memory Allocations 

  Avoid data reallocation using the create clause 
o  It declares variables, arrays or subarrays to be allocated in the device 

memory 
o  No data specified in this clause will be copied between host and 

device 

  The scope of such a clause corresponds to a data region 
o  Data regions are used to define such scopes (as is, they have no 

effect) 
o  They define scalars, arrays and subarrays to be allocated on the 

device memory for the duration of the region 

  Kernels and Parallel regions implicitly define data regions 
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Data Presence 

  How to tell the compiler that data has already been 
allocated? 

  The present clause declares data that are already present on 
the device 
o  Thanks to data region that contains this region of code 

  Runtime will find and use the data on device 
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Data Construct: Create and Present Clause 

HPC Languages 32 

float A[n]; 

#pragma acc data create(A) 
{ 
  #pragma acc kernels present(A) 
  { 
    for(i=0; i < n; i++) { 
      A[i] = B[n – i]; 
    } 
  } 
  … 
  init(C)  
  … 
  #pragma acc kernels present(A) 
  { 
    for(i=0; i < n; i++) { 
      C[i] += A[i] * alpha; 
    } 
  } 
} 

Allocation of A of size n on the 
device 

Deallocation of A on the device 

Reuse of A already allocated on 
the device 

Reuse of A already allocated on 
the device 
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Data Storage: Mirroring 

  How is the data stored in a data region? 
  A data construct defines a section of code where data are mirrored between host and 

device 
  Mirroring duplicates a CPU memory block into the HWA memory 

o  The mirror identifier is a CPU memory block address 
o  Only one mirror per CPU block 
o  Users ensure consistency of copies via directives 
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Host Memory 

Master copy ………
………
………
………
………
………
……. HWA Memory 

CAPS RT 
Descriptor 

………
………
………
………
………
………
……. 

Mirror copy 
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Asynchronism 

  By default, the code on the 
accelerator is synchronous 
o  The host waits for 

completion of the parallel or 
kernels region 

  The async clause enables to 
use the device while the 
host process continues with 
the code following the 
region 

  Can be used on parallel and 
kernels regions and update 
directives 
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CPU HWA 

1 
2 

3 

4 

5 

CPU HWA 

1 
2 

3 

4 

5 
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Wait Directive 

  Causes the program to wait for an asynchronous activity 
o  Parallel, kernels regions or update directives 

  An identifier can be added to the async clause and wait directive: 
o  Host thread will wait for the asynchronous activities with the same ID 

  Without any identifier, the host process waits for all asynchronous 
activities 
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#pragma acc kernels, async 
{ 
  … 
} 
#pragma acc kernels, async 
{ 
  … 
} 
#pragma acc wait 

$!acc kernels, async 1 
  … 
$!acc end kernels 
  … 
$!acc kernels, async 2 
  … 
$!acc end kernels 
  … 
$!acc wait 1 
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OpenACC 2.0 

  OpenACC 2.0 is not officially available 
o  A public draft can be downloaded from the OpenACC web site 

•  http://www.openacc-standard.org/ 
o  This is still a work in progress.  
o  The features described here show the current state as of April'13 

•  Could be slightly different from the latest draft 
o  Final version within a few months 
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Summary of new features 

  Clarifications of the 1.0 specification & new terminology  
  New routine directive 
  New device_type clause 
  Better asynchronous behavior  
  New enter data and exit data directives 
  New link clause for the declare directive 
  Loop Tiling  
  Nested parallelism 
  Several new API calls  
  ... 
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!$acc parallel   
 !$acc loop worker 
 DO i=1,n 
   !$acc loop gang 
   DO j=1,m 
     A(i,j) = 0 
   ENDDO 
 ENDDO  
!$acc end parallel 

This code is not  
legal anymore! 

Clarifications (1) 

  Gang, Worker and Vector shall appear in that order and at 
most once! 
o  Parallel resources are created by the PARALLEL directive  

•  worksharing is theoretically possible in all orders 
o  But that was confusing for most users (even for advanced ones) 
o  Some levels may still be omitted (e.g.  gang & vector is still legal) 
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This code is not what it seems! 

The reduction variable s  
does not contain the whole 

sum after the first loop 

No global synchronization 
in a parallel region 

Clarifications (2) 

  Reductions at gang level 
o  The reduction clauses on PARALLEL or on LOOP GANG directives 

are equivalent 
o  Each gang computes one partial value. 
o  The final reduction occurs after the whole parallel region 
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!$acc parallel   
 s = 0 
 !$acc loop gang reduction(+:sum) 
 DO i=1,n 
   s = s + A(i) 
 ENDDO 
 !$acc loop gang  
 DO i=1,n 
   B(i) = B(i) + s  
 ENDDO 
!$acc end parallel 



New terminology (1) 

  The execution model is quite complex with its 3 optional levels of 
worksharing (gang, worker & vector) 

  A new terminology was needed to describe the behavior at all 
levels of worksharing 
o  The program starts in gang-redundant mode (GR mode) but  

enters gang-partitioned mode (GP mode) within a loop gang  
•  In GR mode, all gangs execute the same code 
•  In GP mode, each gang executes a private subset of the loop iterations  

o  The program starts in worker-single mode (WS mode) but  
enters worker-partitioned mode (WP mode) within a loop worker 

•  In WS mode, only one worker is active per gang  
•  In WP mode, each worker executes a private subset of the loop iterations    

o  The program start in  vector-single mode (VS mode) but  
enters vector-partitioned mode (VP mode) within a loop vector 

•  In VS mode, only one vector lane is active per gang 
•  In VP mode, each vector lane executes a private subset of the loop iterations 
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!$acc parallel private(tmp) num_gangs(16), num_workers(8), 
vector_length(32) 

    tmp=42                      ! GR+WS+VS 

    !$acc loop gang 
    DO i=1,n  
      A(i) = A(i)+tmp           ! GP+WS+VS 
      !$acc loop worker 
      DO j=1,m 
        B(i,j)=B(i,j)+tmp       ! GP+WP+VS 
        !$acc loop vector 
        DO k=1,p 
          C(i,j,k)=C(i,j,k)     ! GP+WP+VP 
        ENDDO 
      ENDDO 
    ENDDO 

!$acc end parallel 

GR=Gang-Redundant   GP=Gang-Partitioned 
WS=Worker-Single    WP=Worker-Partitioned 
VS=Vector-Single    VP=Vector-Partitioned 

Gang-Worker-Vector Terminology Example 
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Example of a Complex Loop Nest Parallelization 
   Extract from NOAA Nonhydrostatic Icosahedral Model (NIM) 

code 

OpenACC Bof SC 
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!$acc parallel present(nprox,prox,u,...) vector_length(1) num_workers(64) num_gangs(512)     !
!$acc loop gang private (rhsu,...) private(ipn,k,isn,...)!
do ipn=ips,ipe!
  n    = nprox(ipn)!
  ipp1 = prox(1,ipn)!
 ...!
!$acc loop worker vector !
  do k=1,nz-1!
    rhsu(k,1) = cs(1,ipn)*u(k  ,ipp1)...!
    ...!
  enddo !k-loop!
    k=nz-1!
    rhsu(k+1,1) = cs(1,ipn)*u(k  ,ipp1)...!
    ...!
!$acc loop worker vector   private(wk)!
   do k=1,nz!
    Lots of statements!
   enddo !k-loop!
!$acc loop seq!
  do isn = 1,nprox(ipn)!
!$acc loop worker vector !
    do k=1,nz-1 !
      Tgtu(k,isn) = ...!
    enddo !k-loop!
    Tgtu(nz,isn) =  2.*Tgtu(nz-1,isn) - ...!
  end do  ! isn-loop!
(continued on next page) !

(continued from previous page) !
!$acc loop seq!
  do isn = 1,nprox(ipn)!
    isp=mod(isn,nprox(ipn))+1!
!$acc loop worker vector !
    do k = 2,nz-1!
      ...!
    end do !  k -loop!
    sedgvar( 1,isn,ipn,1)=(zm(1,ipn)...!
    ...!
   end do   ! isn-loop!
!$acc loop worker vector!
  do k=1,nz!
    kp1=min(nz,k+1)!
    ...!
  end do!
  bedgvar(0,ipn,1)=...!
enddo !ipn-loop!
!$acc end parallel!



!$acc parallel  
  CALL foo(A)       
  !$acc loop gang 
  DO i=1,n  
         CALL foo(A)       
    !$acc loop worker 
    DO j=1,m 
      CALL foo(A)  
    ENDDO 
  ENDDO 
!$acc end parallel 

SUBROUTINE foo(A) 
  REAL    :: 
A(1000) 
  INTEGER :: k  
  !$acc loop 
  DO k=1,1000 
    A(k) = 0  
  ENDDO 
END SUBROUTINE foo 

  Determining worksharing  
the k-loop? 

  If foo is inlined: easy 
  If foo is not inlined: ?  

The ROUTINE Directive (1) 

  Users want to make procedure calls from within ACC regions 
  Not officially supported by OpenACC 1.0  

o  But implemented by vendors with some constraints (e.g. using inlining) 

  The caller and the callee should agree on the worksharing 
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  Annotate the procedure interface or implementation 

  Use one of the clauses gang, worker, vector or seq to control the 
valid level of worksharing 
o  That information is used by both the caller and the caller (should be 

consistant) 
o  If gang then the procedure may contain gang, worker or vector 

worksharing and is callable from gang-redundant mode (GR) 
o  If worker then the procedure may contain worker or vector worksharing 

and is callable from worker-single mode (WS) 
o  If vector then the procedure may contain vector worksharing and is 

callable from vector-single mode (VS) 
o  If seq then the procedure contains no worksharing and is callable from 

anywhere (i.e. pure sequential) 

!$acc routine [clause]  
SUBROUTINE foo(A) 
  ... 
END SUBROUTINE foo 

The ROUTINE Directive (2) 
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!$acc parallel  
  CALL foo(A)             ! valid        
  !$acc loop gang 
  DO i=1,n  
         CALL foo(A)           ! valid       
    !$acc loop worker 
    DO j=1,m 
      CALL foo(A)         ! invalid  
    ENDDO 
  ENDDO 
!$acc end parallel 

!$acc routine worker 
SUBROUTINE foo(A) 
  REAL    :: A(1000) 
  INTEGER :: k  
  !$acc loop worker 
  DO k=1,1000 
    A(k) = 0  
  ENDDO 
END SUBROUTINE foo 

The ROUTINE Directive (3) 
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INTERFACE  
  !$acc routine worker dtype(cuda) bind(”foo_cuda_worker”) 
  SUBROUTINE foo(A) 
    REAL A(*) 
  END SUBROUTINE foo 
END INTERFACE 

The ROUTINE Directive (4) 

  The BIND clause 
o  Change the physical name of the procedure  
o  Work as BIND in Fortran but takes a string or an identifier as 

argument.  
o  Can be used in conjunction with the DEVICE_TYPE clause to call 

hand-written specialized versions (e.g. in CUDA) 
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Loop Tiling (1) 

  The new TILE clause on the LOOP directive allows to tile the 
loop nest before applying worksharing 

  Each loop in a tightly nested loop nest is decomposed into  
o  An outer tile loop 
o  An inner element loop 

  If requested, gang worksharing is applied to the collapsed 
outer tile loops 

  If requested, vector worksharing is typically applied to the 
collapsed inner element loops 

  If requested, worker worksharing is applied to  
o  the outer tile loops if vector worksharing is also requested 
o  or to the inner element loops otherwise 
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!$acc loop gang worker tile(8,12) 
DO i=1,m 
 DO j=1,n 
  B(i,j)=A(i+1,j)+A(i,j+1)+... 
 ENDDO  
ENDDO 

!$acc loop gang collapse(2) 
DO i0=1,m,8 
 DO j0=1,n,12 
   !$acc loop worker collapse(2) 
   DO i=i0,i0+7 
    DO j=j0,j0+11 
      B(i,j)=A(i+1,j)+A(i,j
+1)+... 
    ENDDO 
   ENDDO 
 ENDDO  
ENDDO 

LOOP Tiling Example (2) 

  For simplicity, let's assume that m is a multiple of 8 and n is 
a multiple of 12  
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OpenMP Accelerator Directives 
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OpenMP Views: Two kinds of architectures 

#1 - The accelerator is just another computer  
o  e.g. Intel MIC, TI DSPs , …  
o  It runs a fairly complete Operating System (e.g. Linux, ...) 

•  Applications, Threads, Simple Memory Layout, SIMD instructions, …  
o  Full OpenMP can be or is already implemented on that device 

 #2 - The accelerator is designed for performance 
o  e.g. NVIDIA, AMD, ARM GPUs 
o  No real operating system but a programming API (e.g. CUDA, 

OpenCL, …) 
•   Kernels, Complex Memory Layout, Coalescing, ... 

o  OpenMP cannot be fully implemented on the device 
•  at least not efficiently 

01/07/13 HPC Languages 50 



!$omp target    
  !$omp parallel num_threads(100)    
     !$omp do  
     DO i=1,n  
       A(i) = compute(i)  
     ENDDO  
     !$omp barrier   
     !$omp do  
     DO i=1,n  
       B(i) = A(i) + A(n-i-1)  
     ENDDO  
  !$omp end parallel 
!$omp end target 

The TARGET directive 

  Specify that a piece of 
code is executed on 
the device  

  All OpenMP directives 
shall be allowed within 
the target code 
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TARGET - TEAMS - DISTRIBUTE (1) 

  The target clause does not work well on GPUs 
o  OpenMP cannot be fully implemented on the device 

  A new level of parallelism was introduced: team 
o  A team is basically equivalent to a CUDA thread-block or an OpenCL 

workgroup. 
o  A new directive TEAMS  to create a group of teams 

•  A team allocates its resources (i.e. max number of threads) when it is 
created 

o  No barriers, atomics, critical sections, … across teams 

  A new directive DISTRIBUTE to distribute loop iterations 
over the current group of teams 
o  Similar to the DO and FOR directive  
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  TARGET, TEAMS and DISTRIBUTE shall be perfectly nested 
o  … in the current proposal! that may change in a later version 
o  There is also a combined directive 

  Inside the TARGET-TEAM-DISTRIBUTE use OpenMP directives to 
operate on the threads allocated for the current team.  

!$omp target …     
   !$omp teams num_teams(100) num_threads(16) 
     !$omp distribute  
     DO i=1,n 
       !$omp parallel do num_threads(20)  
       DO j=1,m  
         A(i,j) = compute(i,j)  
       ENDDO 
     ENDDO  
   !$omp end teams 
!$omp end target 

Hoops! There are 
only 16 threads in the 
current team 

TARGET - TEAMS - DISTRIBUTE (2) 
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TEAMS or not TEAMS?  

  The TARGET-TEAMS-DISTRIBUTE model can theoretically 
be implemented on any target with OpenCL support. 
o  Will it be implemented on Intel-MIC?  

•  Teams are part of the spec so yes … in theory 

  The TARGET model cannot be implemented on GPU  
o  Could use a single team (i.e. one CUDA block) but that would be 

inefficient   

  If you want portability  
o  Use the TARGET-TEAMS-DISTRIBUTE model 

  If you want maximum performances on some devices such 
as the Intel-MIC 
o  Use the TARGET model 
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!$omp target data map(alloc:W) map(to:X) map(from:Y) map(tofrom:Z)       

  ! W, X, W, Z are now mapped on the device 
  …  
  ! tThe following code still executes on the host  
  …  

!$omp end target data 

!$acc   data   create(W)      copyin(X)        copyout(Y)         copy(Z) 

Data Management (1) 

  Inspired from OpenACC  
o  But with a different terminology 

  The OMP TARGET DATA construct 
o  Allocate and copy data to or from the device 
o  Comparable to the ACC DATA construct 
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  The TARGET UPDATE directive 
o  Copy already mapped data to and from the device 

  Partial transfers and mapping are possible:  
o  Data must be contiguous as in OpenACC and OpenHMPP 

!$omp target data map(alloc:W,X,Y,Z) 
  …  
  !$omp target update to(X,Z)  
  …  
  !$omp target update from(Y) 
  …   
!$omp end target data 

Data Management (2) 
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Vectorization – SIMD  

  The SIMD directive   
o  Applied to a loop  
o  Control the vectorization (SSE, AVX, … )  
o  Not specific to accelerators 
o  Provide vector worksharing of OpenACC 
o  Several clauses: 

•  safelen(length) 
•  linear(list[:linear-step]) 
•  aligned(list[:alignment]) 
•  private(list) 
•  lastprivate(list) 
•  reduction(operator:list) 
•  collapse(n) 
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For the rest … 

  Use OpenMP constructs and APIs calls  inside the TARGET 
constructs 
o  OMP CRITICAL 
o  OMP BARRIER 
o  OMP PARALLEL 
o  OMP DO 
o  OMP TASKS  
o  ... 

   Is it realistic to implement the whole OpenMP specification 
on the accelerator? 
o  Intel, TI,  and a few other accelerator vendors seem to think so 
o  NVIDIA? AMD? …  
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OpenACC and Extreme Computing 
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  Exascale architectures may be 
o  Massively parallel 
o  Heterogeneous compute units 
o  Hierarchical memory systems 
o  Unreliable 
o  Asynchronous 
o  Very energy saving oriented 
o  … 

  Exascale roadmap needs to be build on programming standards 
o  Nobody can afford re-writing applications again and again 
o  Exascale roadmap, HPC, mass market many-core and embedded systems are sharing many 

common issues 
o  Exascale is not about an heroic technology development 
o  Exascale project must provide technology for a large industry base/uses 

  OpenACC and OpenCL may be candidates 
o  Dealing with inside the node 
o  Part of a standardization initiative 
o  OpenACC complementary to OpenCL 

OpenACC (and OpenCL) in an Exascale Perspective 
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Exascale Programming Environment 
 Technological Challenges 

  (1) Parallel programming APIs 

  Runtime support/systems 

  (2) Debugging and correctness 

  (3) High performance libraries and components 

  Performance tools 

  Tools infrastructure 

  (4) Cross cutting issues 
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1.  Domain specific languages 
2.  API for legacy codes 
3.  MPI + X approaches 
4.  Partitioned Global Address Space (PGAS) languages and 

APIs 
5.  Dealing with hardware heterogeneity 
6.  Data oriented approaches and languages 
7.  Auto-tuning API 
8.  Asynchronous programming models and languages 

(1) Parallel Programming APIs Topics 

01/07/13 63 HPC Languages 



  OpenACC 
o  Directive based approaches particularly suited to legacy codes 
o  Focused on heterogeneous node 
o  Not C only targets also Fortran and C++ 

  OpenCL 
o  Not that convenient for legacy codes 
o  Complex to mix with OpenMP 
o  Can be used to unify multithreading 
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  OpenACC 
o  Complementary to MPI 
o  Complex to mix with OpenMP, i.e. balancing the load over the CPUs 

and accelerators  
o  OpenACC to deal with threads and accelerator parallelism  but 

parallelism expression not for all applications 

  OpenCL 
o  idem 
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1-5 Dealing with Hardware Heterogeneity 

  OpenACC 
o  Designed for this 
o  May simplify code tuning 
o  No automatic load balancing over the heterogeneous units, need to be extended 
o  Better understanding of the code by the compiler (e.g. exposed data management, 

parallel nested loops) 
•  Provide restructuring capabilities 

o  May be extended to consider non volatile memories (NVM) 
o  Does not consider multiple accelerators 

•  Extension to come 

  OpenCL 
o  Designed for this 
o  Code tuning exposes many low level details 
o  Detailed API for resources management 

•  Gives many control to users 
•  Programming may be complex 

o  Interesting parallel model to help vectorization 
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1-7 Auto-tuning API 

  Targeting performance portability issues 
  What would provide an auto-tuning API? 

o  Decision point description  
•  e.g. callsite 

o  Variants description 
•  Abstract syntax trees 
•  Execution constraints (e.g. specialized codelets) 

o  Execution context 
•  Parameter values 
•  Hardware target description and allocation 

o  Runtime control to select variants or drive runtime code generation 
  OpenACC 

o  OpenACC gives more opportunity to compilers/automatic tools 
o  Can be extended to provide a standard API 
o  Many tuning techniques over parallel loops 
o  Orthogonal to programming 

  OpenCL 
o  Can integrate auto-tuning but may be limited in scope  
o  OpenCL is low level, guessing high level properties difficult  
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  OpenACC 
o  Limited asynchronous capabilities, constraints by the host-accelerator 

model  
o  Not suited for data flow approaches, need to be extended 

(OpenHMPP codelet concept more suitable for this) 

  OpenCL 
o  idem 
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1.  Debugging heterogeneous/hybrid codes 
2.  Static debugging 
3.  Dynamic debugging 
4.  Debugging highly asynchronous parallel code at full 

(Peta-,Exa-)scale 
5.  Runtime and debugger integration 
6.  Model aware debugging 
7.  Automatic techniques 

(2) Debugging and Correctness Topics 
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  OpenACC 
o  Preserve most of the serial semantic, helps a lot to design debugging 

tools 
o  Helps to distinguish serial bugs from parallel ones 
o  Programming can be very incremental, simplifying debugging 

  OpenCL 
o  Complex debugging due to many low level details and parallel / 

memory model 
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1.  Application componentization 
2.  Templates/skeleton/component based approaches and 

languages 
3.  Components / library interoperability 
4.  Self- / auto-tuning libraries and components 
5.  New parallel algorithms / parallelization paradigms; e.g. 

resilient algorithms 

(3) High Performance Libraries and Components Topics 

01/07/13 71 HPC Languages 



3-2 Templates/skeleton/component Based Approaches and 
Languages 

  OpenACC 
o  Can be used to write libraries, can exploit already allocated data/HW 

(pcopy clause) 
o  If extended with tuning directives such as hmppcg (e.g. loop 

transformations) can be used to express templates: 
•  Templates to express static code transformations 
•  Use runtime technique to tune dynamic parameters such as the number 

of gangs, workers and vector sizes 

  OpenCL 
o  Used a lot to write libraries  
o  Fits well with C++ components development 
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  Library calls can usually only be partially replaced 
o  Want a unique source code even when using accelerated libraries, CPU version is the 

reference point 
o  No one-to-one mapping between libraries (e.g.BLAS  Cublas, FFTW  CuFFT) 
o  No access to all application codes (i.e. need to keep the CPU library) 

   Deal with multiple address spaces / multi-HWA 
o  Data location may not be unique (copies, mirrors) 
o  Usual library calls assume shared memory 
o  Library efficiency depends on updated data location (long term effect) 

  OpenACC 
o  Needs to interact with users codes, currently limited to sharing the device data ptr 
o  Missing automatic data management allocation (e.g. StarPU) to deal with computation migrations 

(needed to adapt to hardware resources and compute load)  

  OpenCL 
o  OpenACC and OpenCL have to interact efficiently 
o  API can easily be normalized thanks to standardization initiative  
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3-4 Self- / Auto-tuning Libraries and Components 

  OpenACC 
o  Already provided dynamic 

parameters for code 
tuning (e.g. #workers) 

o  Need to be extended to 
allow code templates/
skeletons descriptions 

  OpenCL 
o  Maybe not the right level, 

a bit too low level 
o  Except for vectorization 

techniques 
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1.  Standardization initiative 
2.  Fault tolerance at programming level 
3.  Programming energy consumption control 
4.  Tools interfaces and public APIs 
5.  Intellectual property issues 
6.  Performance portability issues 
7.  Software engineering, applications and users expectations 
8.  Tools development strategy 
9.  Validation: Benchmarks and other mini-apps 
10. Co-design (hardware - software; applications -programming 

environment) 

(4) [Cross cutting issues] 
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  OpenACC 
o  OpenACC data region can be extended to mark structures for 

specific fault tolerance management  
o  Extension of the memory model for NVM, etc. 

  OpenCL 
o  Data management via the API makes it difficult for static tools (e.g. 

compiler, analyzer) 
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  OpenACC 
o  Extremely important to have exascale good representative 

measurements 
o  Kernels are not enough 
o  Tools are usually designed to match benchmark requirement 

•  Very influential of the output 
o  Mini-apps (e.g. Hydro/Prace, Mantevo) pragmatic and efficient approach 

•  But extremely expensive to design 
•  Must be production quality 
•  Need to exhibit extremely scalable algorithms 

o  On the critical path for the foundation of an exascale platform 
  OpenCL 

o  Idem 
o  Limited to C 
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4-9 Validation: Benchmarks and other mini-apps 



  OpenACC/OpenMP provide interesting frameworks for 
designing an Exascale, non revolutionary, programming 
environment for heterogeneous systems 
o  Leverage existing academic and industrial initiative 
o  May be used as a basic infrastructure for higher level approach  
o  Mixable with MPI, PGAS, … 
o  Available on many hardware targets 
o  OpenCL very complementary as a device basic programming layer 

  OpenACC and OpenMP technologies are still to evolve a lot 
as the architecture landscape stabilizes 
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Accelerator Programming model 

Directive-based programming 

Parallel Computing 

OpenHMPP OpenACC GPGPU 

Many-Core programming 

Parallelization 

HPC 
OpenCL 

Code speedup NVIDIA CUDA 

High Performance Computing 

CAPS Compilers 

CAPS Workbench 
Portability 

Performance 

Visit CAPS Website:  
www.caps-entreprise.com 
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