
John Mellor-Crummey
Department of Computer Science

Rice University

johnmc@rice.edu

From HPF to Coarray Fortran 2.0

HPC Languages, Lyon June 2013

2

Parallel Programming Language Challenge

• be ubiquitous
—multicore processors
—cluster in your building
—the largest supercomputers available

• be expressive
• be productive

—easy to write
—easy to read and maintain
—easy to reuse

• be efficient
• have a promise of future availability and longevity
• be supported by tools
• provide a migration path for users

To succeed, a language for scalable parallelism must …

significantly simpler
than MPI!

Outline

• High Performance Fortran
—background and motivation
—experiences compiling High Performance Fortran (HPF)

• Coarray Fortran
—original 1998 version
—Fortran 2008 - a standard with coarrays

• Coarray Fortran 2.0 (CAF 2.0)
—features
—experiences - HPC challenge benchmarks + performance
—implementation notes
—status

• Looking forward

3

Context for HPF

 Early Models for Parallel Programming

• Automatic parallelization

• Explicitly parallel programming: PCF Fortran and OpenMP

• Data-parallel languages

4

The Failure of Automatic Parallelization

“Parallelizing compilers are becoming increasingly successful at
exploiting coarse-grain parallelism in scientific computations as
evidenced by recent results in both ... Polaris ... and ... SUIF
While these results are impressive, some of the programs
achieved little or no speedup when executed in parallel.”
Sungdo Moon, Byoungro So, Mary Hall. Evaluating Automatic Parallelization in the
SUIF compiler. IEEE TPDS 11:1, Jan 2000.

5

Explicitly Parallel Programming Models

• Parallel Computing Forum Fortran and OpenMP

• Features
—single-threaded programming
—SPMD parallelism within parallel loops, cases, and regions
—synchronization mechanisms

– locks
– support for “ordered/doacross” parallelism

• Limitations
—target shared memory platforms

6

Data Parallel Languages

• Strongly influenced by SIMD programming paradigm and its
closeness to the sequential programming model

• Data parallel model
—large data structures laid out across memories of a distributed

memory parallel machine
—elements of these data structures could be operated upon in

parallel
—key properties

– global name space
– single thread of control
– parallel statements execute in a loosely synchronous fashion

• Examples
— Fortran D (Rice), Vienna Fortran, CM Fortran, C*, Data Parallel C,

ZPL

7

HPF Goals

• Provide a convenient programming model for scalable parallel
systems
—particular emphasis on data parallelism

• Present an appropriate machine independent programming model
—global view: application developer should view memory as a single

address space
—programs should have a single thread of control

– all parallelism should derive from data parallelism
—communication should be implicitly generated

• Deliver performance comparable to best hand-coded MPI

8

9

Same answers as
sequential program

Partition computation
Insert communication

Manage storage

Parallel Machine

HPF Program Compilation

Fortran program
+ data partitioning

High Performance Fortran

Partitioning of data drives partitioning of computation,
communication, and synchronization

Disclaimer

• This talk doesn’t attempt to describe all of the HPF language
features and extensions

• Complete coverage language descriptions can be found in the
language standard documents
—http://www.netlib.org/hpf/hpf-v10-final.ps.gz
—http://www.netlib.org/hpf/hpf-v11.ps.gz
—http://www.netlib.org/hpf/hpf-v11.ps.gz

• Concurrency and Computation: Practice and Experience. Special
Issue: High Performance Fortran. Editors: Ken Kennedy, Yoshiki
Seo. Volume 14, Issue 8-9. Pages 551–803, July - 10 August 2002.
—Yoshiki Seo, Hidetoshi Iwashita, Hiroshi Ohta, Hitoshi Sakagami.

HPF/JA: extensions of High Performance Fortran for accelerating
real-world applications, pages 555–573.

10

Principal HPF Language Features
• PROCESSORS

—define a logical k-dimensional grid of virtual processors
—specify rank, and extent in each dimension
—e.g., PROCESSORS p(8, 64, 16)

• TEMPLATE
—abstract space of indexed positions
—target for alignment mappings
—e.g., TEMPLATE t(N,N)

• ALIGN
—specify that data objects will be mapped in the same way as others
—map array dimensions to ranks and positions (affine expressions)
—e.g., ALIGN a(j, i) with t(2*i+1,j)

• DISTRIBUTE
—specify how a dimension of an array or template will be partitioned
—e.g., *, block, cyclic, block(256), cyclic(5)

11

12

Example HPF Program

 DO i = 2, n - 1
 DO j = 2, n - 1
 A(i,j) = .25 *(B(i-1,j) + B(i+1,j)+
 B(i,j-1) + B(i,j+1))

!HPF$ processors P(3,3)
!HPF$ distribute a(block, block) onto P
!HPF$ distribute b(block, block) onto P

Processors

P(0,0)

P(2,2)

Data for A, B

 (BLOCK,BLOCK)distribution

13

Compiling HPF with Rice dHPF Compiler

• Partition data
—follow user directives

• Select mapping of computation to processors
—co-locate computation with data

• Analyze communication requirements
—identify references that access off-processor data

• Partition computation by reducing loop bounds
—schedule each processor to compute on its own data

• Insert communication
—exchange values as needed by the computation

• Manage storage for non-local data

14

dHPF Features for High Performance

• Program analysis
—integer-set based analysis of iteration spaces, communication

• Sophisticated computation partitionings
—e.g. partially-replicated computation to reduce communication

• Sophisticated data partitionings
—skewed cyclic tilings using symbolically-parameterized tiles of

uneven size with many-one mappings of tiles to processors

• Communication optimization
—communication normalization, coalescing
—latency hiding: overlap communication and computation

• Memory hierarchy optimization
—generate clean inner loops
—cache optimization (padding, communication buffer mgmt)

15

3 types of Sets
Data

Iterations
Processors

3 types of Mappings

iterations
data

data
processors

processorsiterations

Layout:
Reference:
CompPart:

• Representation
— integer tuples with Presburger arithmetic for constraints

— universal & existential quantifiers
— linear inequalities with constant coefficients
— logical operators

• Analysis: use set equations to compute set(s) of interest
— iterations allocated to a processor
— communication sets

• Code generation: synthesize loops from set(s), e.g.
— parallel (SPMD) loop nests
— message packing and unpacking

[Adve & Mellor-Crummey, PLDI98]

Formal Compilation Framework

16

processors P(3,3)
distribute A(block, block) onto P
distribute B(block, block) onto P
DO i = 2, n - 1
 DO j = 2, n - 1
 A(i, j) = .25 *(B(i-1, j) + B(i+1, j) +
 B(i, j-1) + B(i, j+1))
 ENDDO
ENDDO

P(x,y)

Local section for P(x,y)
(and iterations executed)

Non-local data
accessed

Iterations that access
non-local data

} 2930yj230y
1920xi220x :j][i, {

+≤≤+&

+≤≤+

data / loop partitioning

20

30

P(0,0) P(1,0) P(2,0)

P(0,1) P(1,1) P(2,1)

P(0,2) P(1,2) P(2,2)

Symbolic Sets

17

symbolic N
Layout := { [pid] -> [i] : 25 *pid + 1 ≤ i ≤ 25 *pid + 25 }

Loop := { [i] : 1 ≤ i ≤ N }
CPSubscript := { [i]  [i-1] }
RefSubscript := { [i]  [i-2] }

 real A(100)
 distribute A(BLOCK) on P(4)
 do i = 1, N
 ... = A(i-1) + A(i-2) + ... ! ON_HOME A(i-1)
 enddo

CompPart := (Layout o CPSubscript -1) ∩ Loop

DataAccessed = CompPart o RefSubscript

NonLocal Data Accessed = DataAccessed - Layout

Analyzing Programs with Integer Sets

Integer Sets Inside the dHPF Compiler
Fragment from CodeGenDisjunctiveIterationSpaces

18dHPF set implementation: Omega [Pugh]

19

HPF/JA: Explicit Control of Shadow Regions
• SHADOW A(4:2,4:4)

• REFLECT

• ON EXT_HOME

• LOCAL

dHPF Extended ON HOME
 Sophisticated partitionings for partially-replicated computation

20

Example of Partial Replication: NAS SP rhs.f

 do k = 0, grid_points(3)-1
 do j = 0, grid_points(2)-1
 do i = 0, grid_points(1)-1
 rho_inv = 1.0d0/u(i,j,k,1)
 !HPF$ ON HOME (rhs(i, j, k, 1), rhs(i - 1, j, k, 1), rhs(i + 1, j, k, 1), rhs(i, j - 1, k, 1),

rhs(i, j + 1, k, 1), rhs(i, j, k - 1, 1), rhs(i, j, k + 1, 1)) BEGIN
 rho_i(i,j,k) = rho_inv
 us(i,j,k) = u(i,j,k,2) * rho_inv
 vs(i,j,k) = u(i,j,k,3) * rho_inv
 ws(i,j,k) = u(i,j,k,4) * rho_inv
 square(i,j,k) = 0.5d0* (u(i,j,k,2)*u(i,j,k,2) + u(i,j,k,3)*u(i,j,k,3) + &
 u(i,j,k,4)*u(i,j,k,4)) * rho_inv
 qs(i,j,k) = square(i,j,k) * rho_inv
 aux = c1c2*rho_inv* (u(i,j,k,5) - square(i,j,k))
 aux = dsqrt(aux)
 speed(i,j,k) = aux
 ainv(i,j,k) = 1.0d0/aux
 CHPF$ END ON
 end do
 end do
 end do

21

later computation nested in the
same enclosing loop used the

partially-replicated values

22

Data Partitioning

• Good parallel performance requires suitable partitioning

• Tightly-coupled computations are problematic

• Line-sweep computations: e.g., ADI integration

recurrences make parallelization difficult
with BLOCK partitionings

 do j = 1, n
 do i = 2,n
 a(i,j) = … a(i-1,j)

23

Coarse-Grain Pipelining

Processor 0

Processor 1

Processor 2

Processor 3

Partial serialization induces wavefront parallelism
 with block partitioning

Compute along partitioned dimensions

24

Coarse-Grain Pipelining

Processor 0

Processor 1

Processor 2

Processor 3

Partial serialization induces wavefront parallelism
 with block partitioning

Compute along partitioned dimensions

25

Processor 0

Processor 1

Processor 2

Processor 3

Multipartitioning

• Each processor owns a tile between each pair of cuts along
each distributed dimension

• Enables full parallelism for a sweep along any partitioned
dimension

26

Processor 0

Processor 1

Processor 2

Processor 3

Multipartitioning

• Each processor owns a tile between each pair of cuts along
each distributed dimension

• Enables full parallelism for a sweep along any partitioned
dimension

27

An array of k > d dimensions can be partitioned into

 p tiles (diagonal multipartitioning)

(p is the number of processors)

d/(d-1)

3D Multipartitioning for 9 processors

Higher-dimensional Multipartitioning

28

Hand-coded
multipartitioning}

} Compiler-
generated

coarse-grain
pipelining

Comparing Parallelization Strategies

29

Generalized Multipartitioning

 Higher dimensional multipartitionings for arbitrary
numbers of processors
– Optimal overpartitionings (more than one tile per processor per

hyperplane) + modular mappings
– Compiler aggregates carried communication for hyperplanes

3D Multipartitioning for 6
processors

3x6x2

30

Generalized Multipartitioning

• Partitioning constraints
— # tiles in each λ - 1 dimensional hyperplane is a multiple of p
— no more cuts than necessary

• Objective function: minimize communication volume
— pick the configuration of cuts to minimize total cross section

IPDPS 2002 Best paper in Algorithms; JPDC 2003

• Mapping constraints
— load balance: in a hyperplane, each proc has same # tiles
— neighbor: in any particular direction, the neighbor of a given processor is

the same

Given an n-dimensional data domain and p processors, select
— which λ dimensions to partition, 2 ≤ λ ≤ n; how many cuts in each

31

Choosing the Best Partitioning

• Enumerate all elementary partitionings
—candidates depend on factorization of p

• Evaluate their communication cost

• Select the minimum cost partitioning

• Modest complexity

• Very fast in practice

32

0 0

00

00

Basic Tile Shape

Modular Shift

Integral # of shapes

Integral # of shapes

Map Tiles with Modular Mappings

Modular Shift

33

Compiler vs. Hand-coded Parallelization

Hand-written
3D Multipartitioning

Compiler-generated
3D Multipartitioning

Execution Traces for NAS BT Class 'A' - 16 processors, SGI Origin 2000
Compiler parallelization with Rice’s dHPF compiler

Communication Coalescing

• Two kinds optimizations
—subsumption

– completely eliminate a
communication set that is
covered by another

—coalescing
– fuse and eliminate duplicates

in partially overlapping sets
– conditions

 same dimension
 same direction
 constant width
 same destination

• How:
—normalize reference subscripts with respect to on home subscript
—compare resulting sets using ‘integer set framework’

34

Memory Hierarchy Management

• Array padding to avoid cache conflicts within arrays

• Inter-array padding to avoid conflicts between arrays

• Arena-based buffer management
—reduced footprint of communication buffers

• Direct access communication buffers as alternative to overlap
regions
—avoid unpacking into overlap region to avoid extra “footprint” in the

cache

35

36

0

0.2500

0.5000

0.7500

1.0000

1 4 9 16 25 36 49 64 81 100

Efficiency NAS SP class 'C'

Pa
ra

lle
l E

ffi
ci

en
cy

Number of Processors

MPI
dHPF

NAS SP Using 3D Multipartitioning

3027 lines
+69 HPF directives

3D multipartitioning
communication coalescing
partially-replicated computation
memory hierarchy optimization

37

NAS BT: Comparing 3 parallelizations

0

0.2500

0.5000

0.7500

1.0000

1 4 9 16 25 36 49 64 81 100

Efficiency NAS SP class 'C'

Pa
ra

lle
l E

ffi
ci

en
cy

Number of Processors

3027 lines
+69 HPF directives

NAS BT Class B

38

IMPACT-3D

HPF application: Simulate 3D Rayleigh-Taylor instabilities in
plasma fluid dynamics using TVD

• Problem size: 1024 x 1024 x 2048
• Compiled with HPF/ES compiler

—7.3 TFLOPS on 2048 ES processors ~ 45% peak

• Compiled with dHPF on Alpha Cluster (Lemieux)

procs relative
speedup

GFLOPS % FP peak

128 1.0 47.3 18.5

256 1.88 89.1 17.4

512 3.72 175.9 17.2

1024 7.45 352.0 17.2

1334 lines
+45 HPF directives

3D block partitioning; use REFLECT and LOCAL

39

Careful Optimization is Required!

• Excess communication undermines scalability
—both frequency and volume must be right!
—examples and impact

– coalesce communication sets for multiple references
 41% lower message volume, 35% faster: NAS SP @ 64 procs

– partially replicate computation to reduce communication
 66% lower message volume, 38% faster: NAS BT @ 64 procs

—embrace HPF/JA-style directives to control communication

• Single processor efficiency is critical
—must use caches effectively on microprocessors
—examples and impact

– use constraints about partners to simplify communication code
 12% fewer Icache misses, 7% faster: NAS SP @ 64 procs

– split loops into “local-only” and “off-processor” loops
 when profitable, don’t unpack into overlap regions
 10% fewer Dcache misses, 9% faster: NAS SP @64 procs

40

High-level Optimization Challenges

• Abstract models like HPF rely on compilers to get the parallelism
right

• Example: Gaussian elimination + partial pivoting
—for each column

– compute the pivot within the column
– compute multipliers to eliminate with pivot
– broadcast pivot and multipliers
– perform elimination on the lower right quadrant

0

41

Gaussian Elimination Parallelism

Conventional HPF Compilation

• All processors perform elimination computation with full
parallelism, but

• Serialized computation of pivot and multipliers

Time

P
r
o
c
e
s
s
o
r
s

42

Getting the Parallelism Right

• Overlap computation of pivot and multipliers with elimination
step

• Requires complex optimization of SPMD program
—splitting elimination computation

– pivot column vs. rest of elimination
—software pipelining can avoid impact of serialization

Time

P
r
o
c
e
s
s
o
r
s

43

partitioning the k loop is subtle:
driven by partitioning of j loop

partitioning the j loop is driven
by the data accessed in its iterations

Productive Parallel 1D FFT (n = 2k)

ripe for space-time tradeoff
as well as strength reduction

subroutine fft(c, n)
 implicit complex(c)
 dimension c(0:n-1), irev(0:n-1)
!HPF$ processors p(number_of_processors())
!HPF$ template t(0:n-1)
!HPF$ align c(i) with t(i)
!HPF$ align irev(i) with t(i)
!HPF$ distribute t(block) onto p
 two_pi = 2.0d0 * acos(-1.0d0)
 levels = number_of_bits(n) - 1
 irev = (/ (bitreverse(i,levels), i= 0, n-1) /)
 forall (i=0:n-1) c(i) = c(irev(i))
 do l = 1, levels ! --- for each level in the FFT
 m = ishft(1, l)
 m2 = ishft(1, l - 1)
 do k = 0, n - 1, m ! --- for each butterfly in a level
 do j = k, k + m2 - 1 ! --- for each point in a half bfly
 ce = exp(cmplx(0.0,(j - k) * -two_pi/real(m)))
 cr = ce * c(j + m2)
 cl = c(j)
 c(j) = cl + cr
 c(j + m2) = cl - cr
 end do
 end do
 enddo
 end subroutine fft

44

FFT Challenges

• Efficient code for bit reverse permutation
—using the memory hierarchy effectively is challenging alone

– gather vs. scatter vs. blended approach

• Strided iteration space for k loop
—makes Presburger arithmetic representation for sets undecidable

• Effectively partitioning computation
—avoid executing loop iterations for which you have no work

• Amortizing communication overhead
—avoid element-wise communication

• Efficient access to values received from remote processors

• Overlapping communication and computation

• Efficient code for inner loops

Need for Tools
• Challenge: substantial gap between a user program and its

distributed-memory implementation

• dHPF approach
—track dependences between input code and generated code

– track the sequence of operations that the compiler applies to the abstract
syntax tree

—using mappings collected, can map back and forth between
fragments in generated code and fragments in source code

—provide tool for viewing source and generated code
—attribute performance to both generated and source programs

• HPCToolkit’s global view of performance
—X. Liu, J. Mellor-Crummey, M. Fagan. A New Approach to

Performance Analysis of OpenMP. ICS 2013.
—A.Eichenberger, J. Mellor-Crummey, et al: OMPT and OMPD:

OpenMP tools application programming interfaces for performance
analysis and debugging. April 2013.
http://openmp.org/mp-documents/ ompt-tr.pdf

45

static tracking

dynamic tracking

Tools Challenge: Gap Between Source and Implementation

 Case study:
 LLNL’s Lulesh in Chapel

• Use Rice’s HPCToolkit to
measure, analyze, present
performance data

• Challenges for Chapel
—tools can only show local view of

performance
– master thread
– worker threads (shown)

—without runtime help, can’t
reconstruct relationship between
compiler-generated code and
user-level application calling
context

46

Global View Performance via Dynamic Tracking
 Case study:
Lulesh in MPI+OpenMP

• Use emerging OMPT
interface to assemble
global view of
application performance

• Key OMPT functionality
—track runtime states
—provide hooks that

enable tools to
reconstruct
application call stacks

• Tool can assemble code-centric,
thread-centric, and time-centric
performance views correlated
with application global view

47

48

Some Lessons from dHPF Project

• Good parallelizations require proper partitionings
—inferior partitionings will fall short at scale

• Excess communication undermines scalability
—both frequency and volume must be right!

• Must exploit what smart users know
—allow the power user to hide or avoid latency

• Single processor efficiency is critical
—node code must be competitive with serial versions
—must use caches effectively on microprocessors

• Compilation challenges can sometimes be daunting
—e.g. FFT

• Brittle compilers present a challenge
—achieving high performance requires “knowing the secret code”

– experiences with HPF randomaccess benchmark

49

Open Research Issues

• Generalize static analysis and code generation for complex
regular cases
—design efficient implementations that are robust

• Give more user feedback/tools so that the issues affecting
performance can be pinpointed
—help user perform source-level tuning

• More directives to enable more programmer control
—in some cases, directives must carry semantic meaning for

improving performance

• Provide efficient support for user-defined distributions to broaden
applicability
—combine data structure abstraction with compiler support
—support for managing details at run-time associated with

implementing complex user-defined partitionings

• Interoperability with other models

50

Some Reasons Why HPF Failed

• Vendors rushed products to market
• Immature compiler technology led to poor performance

—lots learned in dHPF project and others, but too late to save the
language

• Lack of flexible data distributions
—need user-defined distributions

• Inconsistent compiler and runtime implementations
—tailor codes to leverage compiler strengths and avoid idiosyncrasies
—undermined creation of codes with portable high performance

• Paucity of good implementations of HPF Library
—users could not rely on having a good one
—missed opportunity: create a good open source implementation

– Thinking Machine’s CMSSL might have become been a starting point

• Lack of patience by the user community

Outline

• High Performance Fortran
—background and motivation
—experiences compiling High Performance Fortran (HPF)

• Coarray Fortran
—original 1998 version
—Fortran 2008 - a standard with coarrays

• Coarray Fortran 2.0 (CAF 2.0)
—features
—experiences - HPC challenge benchmarks + performance
—implementation notes
—status

• Looking forward

51

52

• Global address space
—one-sided communication (GET/PUT)

• Programmer has control over performance-critical factors
—data distribution and locality control
—computation partitioning
—communication placement

• Data movement and synchronization as language primitives
—amenable to compiler-based communication optimization

• Examples: UPC, Titanium, Chapel, X10, Coarray Fortran

HPF & OpenMP compilers
must get this right

simpler than msg passing

lacking in OpenMP

Partitioned Global Address Space Languages

53

Coarray Fortran (CAF)

• Explicitly-parallel extension of Fortran 95 (Numrich & Reid 1998)

• Global address space SPMD parallel programming model
—one-sided communication

• Simple, two-level memory model for locality management
—local vs. remote memory

• Programmer has control over performance critical decisions
—data partitioning
—computation partitioning
—communication
—synchronization

• Suitable for mapping to shared and distributed memory systems

54

Coarray Fortran (1998)

• SPMD process images
— fixed number of images during execution: num_images()
— images operate asynchronously: this_image()

• Both private and shared data
– real x(20, 20) a private 20x20 array in each image
– real y(20, 20) [*] a shared 20x20 array in each image

• Coarrays with multiple codimensions
– real y(20, 20) [4,*]

• Simple one-sided shared-memory communication
– x(:,j:j+2) = y(:,p:p+2) [r] copy columns from p:p+2 into local columns

• Synchronization intrinsic functions
— sync_all – a barrier and a memory fence
— sync_team(notify, wait)

– notify = a vector of process ids to signal
– wait = a vector of process ids to wait for

– sync_memory – a memory fence
– start_critical/end_critical

• Asymmetric dynamic allocation of shared data

• Weak memory consistency

55

integer a(10,20)[*]

me = this_image()

if (me > 1) a(1:5,1:10) = a(1:5,1:10)[me-1]

a(10,20) a(10,20) a(10,20)

image 1 image 2 image N

image 1 image 2 image N

One-sided Communication with Coarrays

56

A CAF Finite Element Example (Numrich)

subroutine assemble(start, prin, ghost, neib, x)
 integer :: start(:), prin(:), ghost(:), neib(:), k1, k2, p
 real :: x(:) [*]
 call sync_all(neib)
 do p = 1, size(neib) ! Add contributions from ghost regions
 k1 = start(p); k2 = start(p+1)-1
 x(prin(k1:k2)) = x(prin(k1:k2)) + x(ghost(k1:k2)) [neib(p)]
 enddo
 call sync_all(neib)
 do p = 1, size(neib) ! Update the ghosts
 k1 = start(p); k2 = start(p+1)-1
 x(ghost(k1:k2)) [neib(p)] = x(prin(k1:k2))
 enddo
 call sync_all
end subroutine assemble

57

Fortran 2008

• SPMD process images
— fixed number of images during execution: num_images()
— images operate asynchronously: this_image()

• Both private and shared data
– real x(20, 20) a private 20x20 array in each image
– real y(20, 20) [*] a shared 20x20 array in each image

• Coarrays with multiple codimensions
– real y(20, 20) [4,*]

• Simple one-sided shared-memory communication
– x(:,j:j+2) = y(:,p:p+2) [r] copy columns from p:p+2 into local columns

• Synchronization intrinsic functions
— sync all, sync images(image vector)
– sync memory
– critical sections, locks
– atomic_define, atomic_ref

• Asymmetric dynamic allocation of shared data
• Weak memory consistency

CAF on Cray XE6 in 2011

GTS Particle Shifter (LBNL, Cray, PPPL) [SC11]
Preissl, Wichmann, Long, Shalf,

Ethier, Koniges

58

GTS Particle Shifter in MPI

59

two-sided bulk
synchronous

send

GTS Particle Shifter in CAF

60

one-sided
asynchronous

push

GTC Particle Shifter Performance

61

GTS Weak Scaling Performance

62

52% speedup

Why a New Vision?

Fortran 2008 characteristics

• No support for process subsets

• No support for collective communication

• No support for latency hiding or avoidance
—rendezvous synchronization: sync all, sync images

• No remote pointers for manipulating remote linked data
structures

• ... and so on ... (see our critique)
—www.j3-fortran.org/doc/meeting/183/08-126.pdf

63

Coarray Fortran 2.0 Goals

• Exploit multicore processors

• Enable development of portable high-performance programs

• Interoperate with legacy models such as MPI

• Facilitate construction of sophisticated parallel applications and
parallel libraries

• Support irregular and adaptive applications

• Hide communication latency

• Colocate computation with remote data

• Scale to world’s largest supercomputers

64

65

Coarray Fortran 2.0 (CAF 2.0)

• Teams: process subsets, like MPI communicators
—formation using team_split (like MPI_Comm_split)
—collective communication

• Topologies

• Coarrays: shared data allocated across processor subsets
—declaration: double precision :: a(:,:)[*]
—dynamic allocation: allocate(a(n,m)[@row_team])
—access: x(:,n+1) = x(:,0)[mod(team_rank()+1, team_size())]

• Latency tolerance
—hide: asynchronous copy, asynchronous collectives
—avoid: function shipping

• Synchronization
—event variables: point-to-point sync; async completion
—finish: SPMD construct inspired by X10

• Copointers: pointers to remote data

Process Subsets: Teams

• Teams are first-class entities
—ordered sequences of process images
—namespace for indexing images by

rank r in team t
– r ∈ {0..team_size(t) - 1}

—domain for allocating coarrays
—substrate for collective

communication

• Teams need not be disjoint
—an image may be in multiple teams

66

0 1 2 3

2

Ocean Atmosphere

10

4

8

12

5

9

13

6

10

14

7

11

15

0

1

2

3

3

• Predefined teams
—team_world
—team_default

– used for any coarray operation that lacks an explicit team specification

• Operations on teams
—team_rank(team)

– returns the relative rank of the current image within a team
—team_size(team)

– returns the number of images of a given team
—team_split (existing_team, color, key, new_team)

– images supplying the same color are assigned to the same team
– each image’s rank in the new team is determined by lexicographic order of

(key, parent team rank)

Teams and Operations

67

Teams and Coarrays

• Coarray allocation occurs over teams
—storage is allocated over each member of the specified team

• Example
—integer :: a(:, :)[*]
—allocate (a (10, 100)[@team_world])

• Allocation is a collective operation
—barrier after an allocation to know that a coarray is available on

other team members before accessing their data

68

Teams and Coarrays

69

real, allocatable :: x(:,:)[*] ! 2D array
real, allocatable :: z(:,:)[*]
team :: subset
integer :: color, rank

! each image allocates a singleton for z
allocate(z(200,200) [@team_world])

color = floor((2*team_rank(team_world)) / team_size(team_world))

! split into two subsets:
! top and bottom half of team_world
team_split(team_world, color, team_rank(team_world), subset)

! members of the two subset teams
! independently allocate their own coarray x
allocate(x(100,n)[@ subset])

0 1 2 3 ... 114 5 6 7

z

subsetsubset

x x

0 1 2 3 4 5 0 1 2 3 4 5

team_world

Accessing Coarrays on Teams

• Accessing a coarray relative to a team
—x(i,j)[p@ocean] ! p names a rank in team ocean

• Accessing a coarray relative to the default team
—x(i,j)[p] ! p names a rank in team_default
—x(i,j)[p@team_default] ! p names a rank in team_default

• Simplifying processor indexing using “with team”
 with team atmosphere ! set team_default to atmosphere within
 ! p is wrt team atmosphere, q is wrt team ocean
 x(:,0)[p] = y(:)[q@ocean]
 end with team

70

Communication Topologies

• Motivation
—a vector of images may not adequately reflect their logical

communication structure
—multiple co-dimensions only support grid-like logical structures
—want a single mechanism for expressing more general structures

• Topology
—shamelessly patterned after MPI Topologies
—logical structure for communication within a team
—more expressive than multiple codimensions

71

Using Topologies

• Creation
—Cartesian: topology_cartesian((/e1,e2,.../), (/ w1, w2, ... /))
—Graph: topology_graph(e)

– graph_neighbor_add(g,e,n,nv)
– graph_neighbor_delete(g,e,n,nv)

• Binding: topology_bind(team,topology)

• Accessing a coarray using a topology
—Cartesian

– array(:) [+(i1, i2, ..., in)@ocean] ! relative index wrt self in team ocean
– array(:) [(i1, i2, ..., in)@ocean] ! absolute index wrt team ocean
– array(:) [i1, i2, ..., ik] ! wrt enclosing default team

—Graph: access kth neighbor of image i in edge class e
– array(:) [(e,i,k)@g] ! wrt team g
– array(:) [e,i,k] ! wrt enclosing default team

72

Synchronization

• Point-to-point synchronization via event variables
—like counting semaphores
—each variable provides a synchronization context
—a program can use as many events as it needs

– user program events are distinct from library events
—event_notify / event_wait
—event_notify is non-blocking

• Lockset: ordered sets of locks
—convenient to avoid deadlock when locking/unlocking multiple

locks -- uses a canonical ordering

73

Latency Tolerance

• Hide latency for accessing remote data by overlapping it with
computation

• Avoid exposed latency when manipulating remote data structures

• Asynchrony models
—explicit: signal an event to indicate when an asynchronous

operation has completed
—implicit: programmer specifies a point when program must block

until outstanding asynchronous operations have completed
—interactions between models are subtle!

74

75

Predicated Asynchronous Copy

copy_async(var_dest, var_src [, ev_dest] [, ev_src] [, ev_pred])
– var_dest: data target
– var_src: data source
– ev_src: event to be triggered when the read of var_src is complete
– ev_dest: event to be triggered when the write of var_dest is complete
– ev_pred: optional event indicating that copy may proceed

Collective Communication

• Why provide collectives?
—application programmers want them
—avoid having programmers roll their own (non scalable) versions

• Collective operations
—alltoall, barrier, broadcast, all/gather, permute, all/reduce, scatter,

segmented/scan, shift

• User-defined reduction operators

• Potential flavors
—two-sided synchronous

– all execute it together
—two-sided asynchronous

– all team members will execute a call to start it
– all will later wait for it to complete

—one-sided synchronous: one starts it and blocks until done
—one-sided asynchronous: one starts it and later finishes it

76

Two-sided vs. One-sided Collectives

• Issues with one-sided collectives
—where does the data get delivered?

– does the initiator specify an address for each recipient?
– does data get delivered to the same offset in a coarray for each recipient?

—how do I know when I can overwrite it?

• Two-sided collectives address these issues
—each participant receiving a value specifies where to deliver it
—each participant can decide how many asynchronous collectives

can be outstanding at once
– based on the number of buffers available for receiving values

—an asynchronous collective initiated before some recipients are
ready will have (at least part of) its execution deferred until
recipients are ready

77

Coarray Fortran 2.0 supports two-sided
synchronous and asynchronous collectives

78

Asynchronous Collective Operations

• Synchronization:
—team_barrier_async([event] [, team])

• Communication:
—team_broadcast_async(var, root [, event] [, team])
—team_gather_async(var_src, var_dest, root [, event] [, team])
—team_allgather_async(var_src, var_dest [, event] [, team])
—team_reduce_async(var_src, var_dest, root, operator [, event] [, team])
—team_allreduce_async (var_src, var_dest, operator [, event] [, team])
—team_scatter_async(var_src, var_dest, root [, event] [, team])
—team_alltoall_async(var_src, var_dest [, event] [, team])
—team_sort_async(var_src, var_dest, comparison_fn [, event] [, team])
—...

79

Function Shipping

• Reduce communication overhead by moving computation to the
data instead of moving data to computation

• Implicit asynchrony

 finish (team)
 spawn f(table(i,j)[p], n)[p]
 ...
 end finish

CAF 2.0 Finish

• X10 finish
 finish {
 ...
 }
— synchronization model

– Cilk: fully strict - all spawned children reports directly to their parent
– X10: terminally strict

 all asyncs report to an enclosing finish scope
 the enclosing finish scope may be in a different procedure

• CAF 2.0 finish
— SPMD construct defined over teams

 finish (team)
 ...
 end finish

— all members of a team enter a finish block
— any functions that team members ship to one another from within a finish

block must complete before any node will exit the corresponding finish block

80

CAF 2.0 Cofence

• Finish is a heavyweight mechanism
—manages global completion across a team
—sometimes only local completion is needed

– e.g. an asynchronous copy has delivered a value locally

• Cofence manages local completion
—asynchronous copies with implicit completion
—asynchronous collectives with implicit completion

• Can use a cofence within a finish block to demand early
completion of asynchronous operations

81

Local Teams

• Useful to have teams within a locality domain
—bind processes to locality domains (e.g., sockets)

• Add a keyword to a team declaration if it is a local team

• Automatically generate shared-memory communication within
such teams

82

Copointers: Global Pointers

83

• Motivation: support linked
data structures

• copointer attribute enables
association with remote
shared data

• imageof(x)returns the
image number for x

• useful to determine whether
copointer x is local

integer, allocatable :: a(:,:)[*]
integer, copointer :: x(:,:)[*]

allocate(a(1:20, 1:30)[@ team_world]

! associate copointer x with a
! remote section of a coarray
x => a(4:20, 2:25)[p]

! imageof intrinsic returns the target
! image for x
prank = imageof(x)

x(7,9) = 4 ! assumes target of x is local
x(7,9)[] = 4 ! target of x may be remote

Processor 0

Processor 2 Processor 3

Processor 1

Land

• Data partitioning of ocean blocks
— cartesian, balanced, space-filling curve distributions

• Data communication
— boundary updates between neighboring processors
— collective communications (gather, scatter, reduction)

• Different boundary types
— cyclic, closed, tripole 84

LANL’s Parallel Ocean Program

 ! post a receive
 do n=1,in_bndy%nmsg_ew_rcv
 bufsize = ny_block*nghost*in_bndy%nblocks_ew_rcv(n)
 call MPI_IRECV(buf_ew_rcv(1,1,1,n), bufsize, mpi_dbl, &
 in_bndy%ew_rcv_proc(n)-1, &
 mpitag_bndy_2d + in_bndy%ew_rcv_proc(n), &
 in_bndy%communicator, rcv_request(n), ierr)
 end do

 ! pack data and send data
 do n=1,in_bndy%nmsg_ew_snd
 bufsize = ny_block*nghost*in_bndy%nblocks_ew_snd(n)

 partner = in_bndy%ew_snd_proc(n)-1
 do i=1,in_bndy%nblocks_ew_snd(n)
 ib_src = in_bndy%ew_src_add(1,i,n)
 ie_src = ib_src + nghost - 1
 src_block = in_bndy%ew_src_block(i,n)
 buf_ew_snd(:,:,i,n) = ARRAY(ib_src:ie_src,:,src_block)
 end do

 call MPI_ISEND(buf_ew_snd(1,1,1,n), bufsize, mpi_dbl, &
 in_bndy%ew_snd_proc(n)-1, &
 mpitag_bndy_2d + my_task + 1, &
 in_bndy%communicator, snd_request(n), ierr)

 end do

 ! local updates
 ! wait to receive data and unpack data
 call MPI_WAITALL(in_bndy%nmsg_ew_rcv, rcv_request, rcv_status, ierr)

 do n=1,in_bndy%nmsg_ew_rcv
 partner = in_bndy%ew_rcv_proc(n) - 1
 do k=1,in_bndy%nblocks_ew_rcv(n)
 dst_block = in_bndy%ew_dst_block(k,n)
 ib_dst = in_bndy%ew_dst_add(1,k,n)
 ie_dst = ib_dst + nghost - 1
 ARRAY(ib_dst:ie_dst,:,dst_block) = buf_ew_rcv(:,:,k,n)
 end do
 end do

 ! wait send to finish
 call MPI_WAITALL(in_bndy%nmsg_ew_snd, snd_request, snd_status, ierr)

 ! notify each partner that my face is ready
 do face=1,bndy%in_faces
 call event_notify(bndy%incoming(face)%dest_ready[])
 end do

 ! when each partner face is ready
 ! copy one of my faces to a partner’s face
 ! notify my partner’s event when the copy is complete
 do face=1,bndy%out_faces
 copy_async(bndy%outgoing(face)%remote[], &
 bndy%outgoing(face)%local, &
 bndy%outgoing(face)%src_done[], &
 bndy%outgoing(face)%src_ready)
 end do

 ! wait for all of my incoming faces to arrive
 do face=1,bndy%in_faces
 call event_wait(bndy%incoming(face)%dest_done)
 end do

 type :: outgoing_boundary
 double, copointer :: remote(:,:,:)[*]
 double, pointer :: local(:,:,:)
 event :: snd_ready[*]
 event, copointer :: src_done[*]
 end type

 type :: incoming_boundary
 event, copointer :: dest_ready[*]
 event :: dest_done[*]
 end type

 type :: boundaries
 integer :: in_faces, out_faces
 type(outgoing_boundary) :: outgoing(:)
 type(incoming_boundary) :: incoming(:)
 end type

 ! initialize outgoing boundary
 ! set remote to point to a partner’s incoming boundary face
 ! set local to point to one of my outgoing boundary faces
 ! set snd_done to point to rcv_done of a partner’s incoming boundary

 ! initialize incoming boundary
 ! set my face’s rcv_ready to point to my partner face’s snd_ready

MPI

CAF 2.0

Multithreading

• Where can asynchronous threads of control arise in CAF 2.0?
—spawned procedures
—parallel loops

– Fortran 90’s “do concurrent”

• Work in progress to employ Cilk-like lazy multithreading
—generate continuations when spawning functions
—generate a continuation when blocking for synchronization

86

Outline

• High Performance Fortran
—background and motivation
—experiences compiling High Performance Fortran (HPF)

• Coarray Fortran
—original 1998 version
—Fortran 2008 - a standard with coarrays

• Coarray Fortran 2.0 (CAF 2.0)
—features
—experiences - HPC challenge benchmarks + performance
—implementation notes
—status

• Looking forward

87

HPC Challenge Benchmark Goal: Productivity

• Priorities, in order
—performance
—source code volume

• Productivity = performance / (lines of code)

• Implications
—EP STREAM Triad

– outlined a loop to assist compiler optimization
—Randomaccess

– used software routing for higher performance
—FFT

– blocked packing/unpacking loops for bitreversal (8x gain for packing kernel)
—HPL

– tuned code to make good use of the memory hierarchy

88

double precision, allocatable :: a(:)[*], b(:)[*], c(:)[*]

...

! each processor in the default team allocates their own array parts
allocate(a(local_n)[], b(local_n)[], c(local_n)[])

...

! perform the calculation repeatedly to get reliable timings
do round = 1, rounds
 do j = 1, rep
 call triad(a,b,c,local_n,scalar)
 end do
 call team_barrier() ! synchronous barrier across the default team
end do

...

! perform the calculation with top performance
! assembly code is identical to that for sequential Fortran
subroutine triad(a, b, c, n ,scalar)
 double precision :: a(n), b(n), c(n), scalar
 a = b + scalar * c ! EP triad as a Fortran 90 vector operation
end subroutine triad

EP STREAM Triad

89

Randomaccess

• A stream of updates to random locations in a distributed table

• Each update consists of xoring a random value into a random
location in the table

• Each processor performs a subsequence of the updates

90Figure credit: UTK

2

1

 event, allocatable :: delivered(:)[*],received(:)[*] !(stage)
 integer(i8), allocatable :: fwd(:,:,:)[*] ! (#,in/out,stage)
 ...
 ! hypercube-based routing: each processor has 1024 updates
 do i = world_logsize-1, 0, -1 ! log P stages in a route
 ...
 call split(retain(:,last), ret_sizes(last), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)

 if (i < world_logsize-1) then
 event_wait(delivered(i+1))
 call split(fwd(1:,in,i+1), fwd(0,in,i+1), &
 retain(:,current), ret_sizes(current), &
 fwd(1:,out,i), fwd(0,out,i), bufsize, dist)
 event_notify(received(i+1)[from]) ! signal buffer is empty
 endif

 count = fwd(0,out,i)
 event_wait(received(i)) ! ensure buffer is empty from last route
 fwd(0:count,in,i)[partner] = fwd(0:count,out,i) ! send to partner
 event_notify(delivered(i)[partner]) ! notify partner data is there
 ...
 end do

Randomaccess Software Routing

91

HPL

92

• Block-cyclic data distribution

• Team based collective operations along rows and columns
—synchronous max reduction down columns of processors
—asynchronous broadcast of panels to all processors
type(paneltype) :: panels(1:NUMPANELS)

 event, allocatable :: delivered(:)[*]
 ...
 do j = pp, PROBLEMSIZE - 1, BLKSIZE
 cp = mod(j / BLKSIZE, 2) + 1
 ...
 event_wait(delivered(3-cp))
 ...
 if (mycol == cproc) then
 ...
 if (ncol > 0) ... ! update part of the trailing matrix
 call fact(m, n, cp) ! factor the next panel
 ...
 call team_broadcast_async(panels(cp)%buff(1:ub), panels(cp)%info(8), &

 delivered(cp))
 ! update rest of the trailing matrix
 if (nn-ncol>0) call update(m, n, col, nn-ncol, 3 - cp)
 ...
 end do

FFT

• Radix 2 1D FFT implementation

• Block distribution of array “c” across all processors

• Computation
—permute elements: c = (/ c(bitreverse(i), i = 0, n-1 /)

– 3 parts: pack data for all-to-all; team collective all-to-all; unpack data locally
—FFT is log N stages

– compute (log N - log P) stages of the FFT locally
– transpose the data so that each processor has elements ≡ rank mod P

 block distribution → cyclic distribution
– compute the remaining log P stages of the FFT locally
– transpose the data back to its original order

 cyclic distribution → block distribution

93

Experimental Setup

• Coarray Fortran 2.0 by Rice University
—source to source compilation from CAF 2.0 to Fortran 90

– generated code compiled with Portland Group’s pgf90
—CAF 2.0 runtime system built upon GASNet (version 1.14.2)
—scalable implementation of teams, using O(log P) storage

• Experimental platform: Cray XT
—systems

– Franklin at NERSC
 2.3 GHz AMD “Budapest” quad-core Opteron, 2GB DDR2-800/core

– Jaguar at ORNL
 2.1 GHz AMD “Budapest” quad-core Opteron, 2GB DDR2-800/core

—network topology
– 3D Torus based on Seastar2 routers
– OS provides an arbitrary set of nodes to an application

94

Scalability: Relative Parallel Efficiency

95

0

0.2

0.4

0.6

0.8

1

64 256 1024 4096

1.00 0.96 0.97 0.97

EP STREAM Triad

0

0.2

0.4

0.6

0.8

1

64 256 1024 4096

1.00

0.75

0.54

0.39

Randomaccess

0

0.2

0.4

0.6

0.8

1

64 256 1024 4096

1.00
0.94

0.87
0.79

HPL

0

0.2

0.4

0.6

0.8

1

64 256 1024 4096

1.00

0.80

0.65

0.53

FFT

Productivity = Performance / SLOC

Performance (Cray XT4)

Source lines of code

96

HPC Challenge
Benchmark

Source Lines
of Code

Reference
SLOC

Randomaccess 409 787
EP STREAM Triad 58 329

Global HPL 786 8800
Global FFT ~390 1130

Notes
• EP STREAM: 66% of

memory B/W peak
• Randomaccess: high

performance without
special-purpose runtime

• HPL: 49% of FP peak at @
4096 cores (uses dgemm)

of
cores

STREAM Triad†
(TByte/s)

RandomAccess*(GU
P/s)

Global HPL†
(TFlop/s)

Global FFT†
(GFlop/s)

64 0.14 0.08 0.36 6.69
256 0.54 0.24 1.36 22.82

1024 2.18 0.69 4.99 67.80
4096 8.73 2.01 18.3 187.04

HPC Challenge Benchmark

*Measured on Jaguar †Measured on Franklin

Scalability: Relative Parallel Efficiency

97

14.2 GUPS
404 GF

CAF 2.0 Early Experiences Summary

• A viable programming model for scalable parallel computing
—expressive
—easy to use

• Significantly smaller code than MPI, yet achieves scalable high
performance
—prototype implementation scales to thousands of nodes
—scalable high performance, but not exceptional performance

• Significant increase in productivity measured by performance per
line of code

98

CAF 2.0 Team Representation

99

• Designed for scalability: representation is O(log S) per node
for a team of size s

• Based on the concept of pointer jumping

• Pointers to predecessors and successors at distance i = 2j,
j = 0 ..⎡log S⎤

0 1 2 3 4 5 6 7

20

22

21

CAF Team Split
• Sort (color, key, rank) tuples using parallel bitionic sort

• Left and right shift operations to determine team boundaries

• Segmented scans to compute one’s rank within a team
—compute team size and rank and disseminate first rank with a forward

scan
—segmented broadcast in the reverse direction informs each rank of the

size and last member

• Subteams can be assembled once each image knows
—its left and right neighbors

at distance one in the
circular order of its
subteam

—the size of the subteam,
and its rank in the subteam.

• Space and time: O(log2 P)
—bitonic sort

100

A. Moody, et al. Exascale Algorithms for
Generalized MPI_Comm_split. EuroMPI 2011.

Collective Example: Barrier

Dissemination algorithm

101

for k = 0 to ⎡log2 P⎤
 processor i signals processor (i + 2k) mod P with a PUT

 processor i waits for signal from (i - 2k) mod P

0 1 2 3 4 5 6 7

20

22

21

round 0

round 1

round 2

Collective Example: Broadcast

Binomial Tree

102

0 1 2 3 4 5 6 7

20

22

21

round 0

round 1

round 2

103

Strengths and Weaknesses of CAF 2.0

• Strengths
—provides full control over data and computation partitioning
—admits sophisticated parallelizations
—compiler and runtime systems are tractable
—yields scalable high performance today with careful programming

• Weaknesses
—users code data movement and synchronization

– significantly harder than HPF
—optimizing performance can require careful parallel programming

– overlapping communication and computation may require managing multiple
communication buffers

– hiding latency requires
 using non-blocking primitives for data movement and synchronization
 overlapping latency of communication with computation
 managing the completion of asynchronous operations

Lessons from Experience with CAF 2.0

• Need the right communication primitives to support the language
implementation
—missing: one-sided “put with notify”

– notify should be an atomic add

• Flow control of one-sided communication is an issue for current
architectures

• Integrated progress engine between language runtime and
underlying communication layer is a key to good performance

104

Implementation Status

• Source-to-source translator is a work in progress
—requires no vendor buy-in
—delivers node performance of mature vendor compilers
—ongoing work to improve Fortran coverage in ROSE

• Ongoing work
—copointers
—lazy multithreading
—coarray binding interface for inter-team communication
—graph topology for managing irregular communication patterns

105

Looking Forward

• Communication avoiding algorithms
—broad class of strategies that communicate asymptotically less

than their conventionsl counterparts

• Examples
—time skewing, e.g., overlapped tiling
—new algorithms for linear algebra, e.g., matrix multiply

106

SHADOW (4:4,4:4)

k=3
k=2

Vision for Overlapped Tiling in dHPF

107

!HPF$ REFLECT
 do k =3, 0, -1
!HPF$ on home a(i+k, j-k), a(i+k,j+k), a(i-k,j+k), a(i-k,j-k) begin
!HPF$ local begin
 do i = 1, n-1
 a(i,j) = a(i, j) + a(i,j-1)+a(i,j+1)+a(i-1,j)+a(i+1,j)
 enddo
!HPF$ local end
!HPF$ on home end
 enddo

k=1
k=0

Overlapped tiling has been used
in code generation for GPUs

Assumptions: 2D BLOCK distribution for A

17

Matrix Multiplication

Consider data needed for output matrix block shown in purple

× =

109

Cannon’s Matrix Multiplication

Initial State

× =

A, B are distributed on x processor grid

32

Matrix-Matrix Multiplication: Cannon's Algorithm

• Alignment step
—maximum distance over which a block shifts is
— two shift operations require a total of time.

• Compute-shift phase
— single-step shifts
— each shift takes time

• Computation time
— multiplying matrices of size is

• The parallel time is approximately

• More messages, but Cannon’s is memory optimal

32

Matrix-Matrix Multiplication: Cannon's Algorithm

• Alignment step
—maximum distance over which a block shifts is
— two shift operations require a total of time.

• Compute-shift phase
— single-step shifts
— each shift takes time

• Computation time
— multiplying matrices of size is

• The parallel time is approximately

• More messages, but Cannon’s is memory optimal

110

Cannon’s Matrix Multiplication

Stage 1: Perform Alignment
shift Aij left by I

shift Bij up by j

× =

111

Cannon’s Matrix Multiplication

Step 1: Perform Alignment
shift Aij left by I

shift Bij up by j

× =

Alignment step 1

112

Cannon’s Matrix Multiplication

Step 1: Perform Alignment
shift Aij left by I

shift Bij up by j

× =

Alignment step 2

113

Cannon’s Matrix Multiplication

Step 1: Align the tiles for the systolic computation
shift Aij left by I

shift Bij up by j

× =

Alignment step 3

114

Cannon’s Matrix Multiplication

Step 1: Perform Multiplication; then
shift Aij left by 1

shift Bij up by 1

× =

Multiplication step 1

115

Cannon’s Matrix Multiplication

Step 1: Perform Multiplication; then
shift Aij left by 1

shift Bij up by 1

× =

Multiplication step 2

116

Cannon’s Matrix Multiplication

Step 1: Perform Multiplication; then
shift Aij left by 1

shift Bij up by 1

× =

Multiplication step 3

117

Cannon’s Matrix Multiplication

Step 1: Perform Multiplication; then
shift Aij left by 1

shift Bij up by 1

× =

Multiplication step 4

118

Cannon’s Matrix Multiplication

Step 1: Perform Multiplication; then
shift Aij left by 1

shift Bij up by 1

× =

Multiplication step 5

119

Cannon’s Matrix Multiplication

Step 1: Perform Multiplication; then
shift Aij left by 1

shift Bij up by 1

× =

Multiplication step 6

2.5D Matrix Multiplication

Each green circle represents tiles
of the A and B matrix of size:

Each point on the cube is a
processor

c

18

Matrix-Matrix Multiplication

• All-to-all broadcast
— blocks of A along rows
— blocks of B along columns

• Perform local submatrix multiplication

• Two all-to-all broadcasts take time

• Computation requires multiplications of
 submatrices

• Parallel run time is approximately

• Major drawback of the algorithm: memory requirements
— each process needs space for a block of rows and a block of columns

≈ 2

Demmel and Solomonik, Europar 2011,
Distinguished Paper.

2.5D Matrix Multiplication Algorithm

Algorithm 2: [C] = 2.5D-matrix-multiply(A,B,n,p,c)

Input: square n-by-n matrices A, B distributed so that Pij0 owns np
p/c

-by- np
p/c

blocks Aij and Bij for each i, j

Output: square n-by-n matrix C = A ·B distributed so that Pij0 owns np
p/c

-by- np
p/c

block Cij for each i, j

/* do in parallel with all processors */

forall i, j 2 {0, 1, ...,
p

p/c� 1}, k 2 {0, 1, ..., c� 1} do
Pij0 broadcasts Aij and Bij to all Pijk /* replicate input matrices */

s := mod (j � i+ k
p

p/c3,
p

p/c) /* initial circular shift on A */

Pijk sends Aij to A
local

on Pisk

s0 := mod (i� j + k
p

p/c3,
p

p/c) /* initial circular shift on B */

Pijk sends Bij to B
local

on Ps0jk

Cijk := A
local

·B
local

s := mod (j + 1,
p

p/c)

s0 := mod (i+ 1,
p

p/c)

for t = 1 to
p

p/c3 � 1 do
Pijk sends A

local

to Pisk /* rightwards circular shift on A */

Pijk sends B
local

to Ps0jk /* downwards circular shift on B */

Cijk := Cijk +A
local

·B
local

end
Pijk contributes Cijk to a sum-reduction to Pij0

end

4 2.5D LU communication lower bound

We argue that for Gaussian-elimination style LU algorithms that achieve the bandwidth lower bound, the
latency lower bound is actually much higher, namely Slu = ⌦

�p
cp
�
.

Given a parallel LU factorization algorithm, we assume the algorithm must uphold the following properties

1. Consider the largest k-by-k matrix A
00

factorized sequentially such that A =


A

00

A
01

A
10

A
11

�
(we can always

pick some A
00

since at least the top left element of A is factorized sequentially), the following conditions
must hold,
(a) ⌦(k3) flops must be done before A

11

can be factorized (it can be updated but Gaussian elimination
cannot start).

(b) ⌦(k2) words must be communication before A
11

can be factorized.
(c) ⌦(1) messages must be sent before A

11

can be factorized.
2. The above condition holds recursively (for factorization of A

11

in place of A).

We now lower bound the communication cost for any algorithm that follows the above restrictions. Any
such algorithm must compute a sequence of diagonal blocks {A

00

, A
11

, . . . , Ad�1,d�1

}. Let the dimensions
of the blocks be {k

0

, k
1

, . . . , kd�1

}. As done in Gaussian Elimination and as required by our conditions, the
factorizations of these blocks are on the critical path and must be done in strict sequence.

Given this dependency path (shown in Figure 2), we can lower bound the complexity of the algorithm
by counting the complexity along this path. The latency cost is ⌦(d) messages, the bandwidth cost isPd�1

i=0

⌦(k2i) words and the computational cost is
Pd�1

i=0

⌦(k3i) flops. Due to the constraint,
Pd�1

i=0

ki = n, it
is best to pick all ki = k, for some k (we now get d = n/k), to minimize bandwidth and flop costs. Now we
see that the algorithmic costs are

Flu = ⌦(nk2) Slu = ⌦(n/k) Wlu = ⌦(nk).

Evidently, if we want to do O(n3/p) flops we need k = O
⇣

np
p

⌘
, which would necessitate S = ⌦(

p
p).

Further, the cost of sacrificing flops for latency is large. Namely, if S = O
⇣p

p
r

⌘
, the computational cost is

2.5D Matrix Multiplication Algorithm

Algorithm 2: [C] = 2.5D-matrix-multiply(A,B,n,p,c)

Input: square n-by-n matrices A, B distributed so that Pij0 owns np
p/c

-by- np
p/c

blocks Aij and Bij for each i, j

Output: square n-by-n matrix C = A ·B distributed so that Pij0 owns np
p/c

-by- np
p/c

block Cij for each i, j

/* do in parallel with all processors */

forall i, j 2 {0, 1, ...,
p

p/c� 1}, k 2 {0, 1, ..., c� 1} do
Pij0 broadcasts Aij and Bij to all Pijk /* replicate input matrices */

s := mod (j � i+ k
p

p/c3,
p

p/c) /* initial circular shift on A */

Pijk sends Aij to A
local

on Pisk

s0 := mod (i� j + k
p

p/c3,
p

p/c) /* initial circular shift on B */

Pijk sends Bij to B
local

on Ps0jk

Cijk := A
local

·B
local

s := mod (j + 1,
p

p/c)

s0 := mod (i+ 1,
p

p/c)

for t = 1 to
p

p/c3 � 1 do
Pijk sends A

local

to Pisk /* rightwards circular shift on A */

Pijk sends B
local

to Ps0jk /* downwards circular shift on B */

Cijk := Cijk +A
local

·B
local

end
Pijk contributes Cijk to a sum-reduction to Pij0

end

4 2.5D LU communication lower bound

We argue that for Gaussian-elimination style LU algorithms that achieve the bandwidth lower bound, the
latency lower bound is actually much higher, namely Slu = ⌦

�p
cp
�
.

Given a parallel LU factorization algorithm, we assume the algorithm must uphold the following properties

1. Consider the largest k-by-k matrix A
00

factorized sequentially such that A =


A

00

A
01

A
10

A
11

�
(we can always

pick some A
00

since at least the top left element of A is factorized sequentially), the following conditions
must hold,
(a) ⌦(k3) flops must be done before A

11

can be factorized (it can be updated but Gaussian elimination
cannot start).

(b) ⌦(k2) words must be communication before A
11

can be factorized.
(c) ⌦(1) messages must be sent before A

11

can be factorized.
2. The above condition holds recursively (for factorization of A

11

in place of A).

We now lower bound the communication cost for any algorithm that follows the above restrictions. Any
such algorithm must compute a sequence of diagonal blocks {A

00

, A
11

, . . . , Ad�1,d�1

}. Let the dimensions
of the blocks be {k

0

, k
1

, . . . , kd�1

}. As done in Gaussian Elimination and as required by our conditions, the
factorizations of these blocks are on the critical path and must be done in strict sequence.

Given this dependency path (shown in Figure 2), we can lower bound the complexity of the algorithm
by counting the complexity along this path. The latency cost is ⌦(d) messages, the bandwidth cost isPd�1

i=0

⌦(k2i) words and the computational cost is
Pd�1

i=0

⌦(k3i) flops. Due to the constraint,
Pd�1

i=0

ki = n, it
is best to pick all ki = k, for some k (we now get d = n/k), to minimize bandwidth and flop costs. Now we
see that the algorithmic costs are

Flu = ⌦(nk2) Slu = ⌦(n/k) Wlu = ⌦(nk).

Evidently, if we want to do O(n3/p) flops we need k = O
⇣

np
p

⌘
, which would necessitate S = ⌦(

p
p).

Further, the cost of sacrificing flops for latency is large. Namely, if S = O
⇣p

p
r

⌘
, the computational cost is

broadcast front plane’s blocks to the
back planes of the cube

analogous to Cannon’s alignment

analogous to Cannon’s multiply and shift
step

Sketch Communication-avoiding MM in HPF

 !HPF$ processors p(p1,p1,c)
 !HPF$ template t(p1,p1,c)
 !HPF$ align x(*,*,*,:,:,:) with t(:,:,:)
 !HPF$ distribute t(block,block,block) onto p
 integer x(n,n,3,p1,p1,c)

 subroutine bcast(x,n,p1,c)
 integer n, p1, c, k
 do k = 2, c ! broadcast
 x(:, :, 1, :, :, k) = x(:, :, 1, :, :, 1)
 enddo
 end

 subroutine multiply(r,a,b,n,p1,c,cur)
 integer i,j,k
 do j = 1, n
 do k = 1, n
 do i = 1, n
 r(i, j, cur, :, :, :) = r(i, j, cur, :, :, :)
 + a(i, k, cur, :, :,:) * b(k, j, cur, :, :,:)
 enddo
 enddo
 enddo
 end

123

 subroutine rowshift(a,n,p1,c,now)
 integer n, p1, c, d, src, dest, next
 next = mod(now,3) + 1
 do dest = 1, p1
 src = mod(dest, p1) + 1
 a(:, :, next, dest, :, :) = a(:, :, now, src, :, :)
 enddo
 end

 subroutine reduce(x, n, p1, c)
 integer n, p1, c
 integer x(n,n,3,p1,p1,c)
 integer k
 do k = 2, c
 x(:, :, 1, :, :, 1) = x(:, :, 1, :, :, 1) + x(:, :, 1, :, :, k)
 enddo
 end

 Global view/SPMD programming style

these directives apply to all arrays

local computation
on each processor

from front plane to the rest
can be used for systolic row shift;

similar for row alignment

reduce to front plane from rest

124

Summary: What We Need For HPC Languages
• Careful design of language features to support separation of data

parallel aspects from algorithm

• Explicit high-level control of communication where practical

• Support for user-defined distributions

• Attention to important programming idioms

• Sustained investment in compiler technology
—managing iteration spaces, data movement, synchronization, latency

tolerance, locality

• Interoperability

• Programming language ecosystem: tools

• High quality open source implementation

• Plan for longevity

• If not, we’re doomed to fragmented programming!

