
CnC for high performance
computing

Kath Knobe

Intel SSG

Thanks

2

• Frank Schlimbach – Intel

• Vivek Sarkar and his group – Rice University

• DARPA UHPC (Runnemede)

• DOE X-Stack (Trilacka Glacier)

Outline

• Intro

• Checkpoint/restart

• Tuning language

• Adaptive computing

Productivity
Analyzability
Protability
Adaptivity

The big idea

Don’t specify what operations run in parallel
Difficult and depends on target

Specify only required orderings
Easy, known and depends only on application

4

compute1

COMPUTE STEP

data

DATA ITEM

compute2

COMPUTE STEP

Exactly 2 constraints on parallelism

• Producer must execute before consumer

5

CONTROL TAG

control

• Producer must execute before consumer

• Controller must execute before controllee

compute1

COMPUTE STEP

data

DATA ITEM

compute3

COMPUTE STEP

Exactly 2 constraints on parallelism

6

CONTROL TAG

controlT compute3

COMPUTE STEP

compute4

COMPUTE STEP

compute2

COMPUTE STEP

<Cell tags Initial: K, cell> (Correction filter: K, cell)

(Cell tracker: K) (Arbitrator initial: K)

(Arbitrator final: K)

[Input Image: K]

[Histograms: K]

[Motion corrections: K , cell]

[Labeled cells initial: K]

[Predicted states: K, cell]

[Cell candidates: K]

[State measurements: K]

[Labeled cells final: K]

[Final states: K]

<K>

(Prediction filter: K, cell)

(Cell detector: K)

Example app:
Cell tracker

<Cell tags Final: K, cell>

7

Representations

8

CONTROL TAG

control compute1

COMPUTE STEP

data

DATA ITEM

compute3

COMPUTE STEP CONTROL TAG

controlT compute3

COMPUTE STEP

compute4

COMPUTE STEP

compute2

COMPUTE STEP

compute1(j, k) -> data[j, k] -> compute2(j, k)

compute3(row, col) -> controlT<row, col> -> compute2(row, col)

Graphical

textual

API

Language dependent – one API call per graph edge

How to think about control tags

• Control tag: just an identifier in the form of a tuple

• Examples

-For matrix computation

matrixTags<row, col, iter>

-Set of images in video

 imageTags<imageID>

-Set of images in video that contain faces

 faceTags<imageID>

• Very much like an iteration loop and its body

-For each instance in the collection controlT the associated
instance of compute 4 will execute with access to its tag value.

9

CONTROL TAG

controlT compute4

COMPUTE STEP

Pair CnC with computation language
Sample step code in C++

// Performs symmetric rank-k update of the submatrix.

// Input to this step is the given submatrix and the output of the previous step.

int update_step::execute(const triple & t, cholesky_context & c) const

{

 const int b = c.b; const int k = t[0]; const int j = t[1]; const int i = t[2];

 assert(j != k && i != k);

 tile_type A_block, L1_block, L2_block;

 c.tiles.get(triple(k, j, i), A_block); // Get the input tile.

 if(i==j){ // Diagonal tile.

 c.tiles.get(triple(k+1, i, k), L1_block); // both the tiles are the same.

 } else{ // Non-diagonal tile.

 c.tiles.get(triple(k+1, i, k), L2_block); // Get the first tile.

 c.tiles.get(triple(k+1, j, k), L1_block); // Get the second tile.

 }

 // A_block is a copy, a local variable, so we can overwrite at will

 for(int j_b = 0; j_b < b; j_b++) {

 for(int k_b = 0; k_b < b; k_b++) {
 A_block(i_b, j_b) = ...;
 }

 }

 c.tiles.put(triple(k+1, j, i, A_block); // Write the output at the next iteration.

 return CnC::CNC_Success;

}

get reads in an instance of a data item

put writes an instance of a data item

10

Status

Intel
C++

Rice
Java, C, Scala, Python, Babel, …

Indiana
Haskell, …

Participates in

XStack Traleika Glacier

UPHC Runnemede

As part of X-Stack

Will have CnC on Open
Community Runtime (OCR)

Existing support
Distributed memory
Heterogeneous platforms

CPU/GPU/FPGA
CPU/MIC

Some of the ideas here

-Exist

-Are in design

-Are in implementation

11

Isolation / mediation

12

CONTROL TAG

Face

<imageID>

detectFace

(imageID)

COMPUTE STEP

recogFace

(imageID)

COMPUTE STEP

Isolation / mediation

13

CONTROL TAG

Face

<imageID>

detectFace

(imageID)

COMPUTE STEP

recogFace

(imageID)

COMPUTE STEP

gender

(imageID)

COMPUTE STEP

Controller: detectFace<> doesn’t need to know

Isolation / mediation

14

CONTROL TAG

Face

<imageID>

detectFace

(imageID)

COMPUTE STEP

recogFace

(imageID)

COMPUTE STEP

detectFace2

(imageID)

COMPUTE STEP

Controllee: recogFace<> doesn’t need to know

The Contract
guarantees to support productivity
• If the programmer guarantees

- Steps are atomic

Get inputs, compute, put outputs

- Steps have no side effects

- Item obey dynamic single assignment (DSA) rule:

Each given item name & tag is associated with a unique
value (no overwriting)

• Then CnC guarantees

- Determinism

• But

Can do what you want. CnC will handle scheduling.

The Contract
guarantees to support productivity
• If the programmer guarantees

- Steps are atomic

Get inputs, compute, put outputs

- Steps have no side effects

- Item obey dynamic single assignment (DSA) rule:

Each given item name & tag is associated with a unique value
(no overwriting)

• Then CnC guarantees

- Determinism

• But

- Can do what you want. CnC will handle scheduling.

• The rest of the talk assumes the contract

A way to specify coordination of parts

Independent of:

• The computation language within the step
- existing: C, C++, Java, Scala, Haskell, Python, Fortran (via Babel)…

• Parallelism within a computation

• Tuning
- the distribution across the platform

- the ordering in time (other than semantic ordering requirements)

• Type of runtime
- static/dynamic choice of grain/distribution/schedule

• Underlying support
- TBB, Qthreads, pthreads, Habenaro, MPI, Open Community Runtime (DOE), …

• The memory model

• The form in which the spec written
- graphical interface

- a textual representation of the graph

- an API describing the graph.

17

A word about migration

• Can use your current computation is C, C++,
Fortran, Java, …

-Package it up a bit differently

• Bottom-up

-start with a small piece of your app

-create and execute a CnC graph

-continue with the rest of your application

• Top-down

-Break the whole app in to a small number of very
large CnC chunks

-As needed, break some of those into smaller pieces

18

CnC is a high-level declarative specification
of the semantics

allows for a wide variety of runtime approaches

grain distribution schedule

 HP

Intel

Georgia
Tech

HP

Rice

static static

static

static

static

dynamic

static

dynamic dynamic

static

dynamic dynamic

dynamic

dynamic dynamic

CnC / TStreams

High-level declarative specification
allows for a wide variety of runtime approaches

Three example specs

• Cholesky – all about data flow

• Face detection – all about control flow

• Iteration – about both control and data flow

20

Cholesky factorization

Cholesky

Cholesky factorization

Cholesky

Trisolve

Cholesky factorization

Cholesky

Trisolve Update

Cholesky factorization

Cholesky

Cholesky factorization

26

1. White board (how people think)

Cholesky

Trisolve

Update

COMPUTE STEP

COMPUTE STEP

COMPUTE STEP

Array

DATA ITEM

- computations
- data
- producer/consumer relations
- I/O

27

2: Distinguish among the instances

Cholesky: iter

Trisolve: row, iter

Update: col, row, iter

COMPUTE STEP

COMPUTE STEP

COMPUTE STEP

Array: col, row, iter

DATA ITEM

28

3: What are the control tag collections

TrisolveTag: row, iter

CholeskyTag: iter

UpdateTag: col, row, iter

CONTROL TAG

CONTROL TAG

CONTROL TAG

Cholesky: iter

Trisolve: row, iter

Update: col, row, iter

COMPUTE STEP

COMPUTE STEP

COMPUTE STEP

Array : col, row, iter

DATA ITEM

TrisolveTag: row, iter

29

4: Who produces control

CholeskyTag: iter

UpdateTag: col, row, iter

CONTROL TAG

CONTROL TAG

CONTROL TAG

Cholesky: iter

Trisolve: row, iter

Update: col, row, iter

COMPUTE STEP

COMPUTE STEP

COMPUTE STEP

Array : col, row, iter

DATA ITEM

Sample user application
face detection

Classifier1(F)

Classifier2(F)

Classifier3(F)

image[F]

C3Tag<F>

C1Tag<F>

C2Tag<F>

face<F>

30

Conditional execution

Classifier1(F)

Classifier2(F)

C1Tag<F>

C2Tag<F>

Conditional execution Increase iteration space

32

Classifier1(F)

Classifier2(F)

C1Tag<F>

C2Tag<F>
A(J)

B(J, K)

tagA<J>

tagB<J, K>

First iteration on initial data

33

iterTag: iter

CONTROL TAG

loopBody: iter

COMPUTE STEP

data: iter

DATA ITEM

An iteration might produce the next
control tag and the next data item

34

iterTag: iter

CONTROL TAG

loopBody: iter

COMPUTE STEP

data: iter

DATA ITEM

The data items and tags might be output

35

iterTag: iter

CONTROL TAG

loopBody: iter

COMPUTE STEP

data: iter

DATA ITEM

Exactly the same as building a tree
Output produces more than one tag and item

36

nodeTag: nodeID

CONTROL TAG

nodeBody: nodeID

COMPUTE STEP

nodeData: nodeID

DATA ITEM

 loop iteration, binary tree, quad tree, oct tree

Depth-first or breadth-first

What is it?

• Working in static analysis for
parallel systems. Realize:

•The user knows what the
compiler is not able to uncover

•The language gets in the way

• Design a language the allows
the user to say exactly what
we want to know

• User writes an ideal PDG

-Data dependences
• Only true dependences

• No anti-dependences

• No output dependences

-Control dependences
• PDG region nodes

• Dynamic single assignment

37

Influences
-Data flow but not just data flow

-Also control flow

-Influenced by tuple-spaces

Alternate view

How to think about CnC execution

Item
avail

tag
avail

Item
avail

step
controlReady

step
dataReady

tag
avail

How to think about CnC execution

model

Item
avail

step
controlReady

step
ready

step
dataReady

tag
avail

How to think about CnC execution

Semantics / execution
model

Item
avail

step
controlReady

step
ready

step
dataReady

tag
avail

How to think about CnC execution

Semantics / execution
model

Item
avail

step
controlReady

step
ready

step
dataReady

tag
avail

How to think about CnC execution

Item
avail

step
controlReady

step
ready

step
dataReady

step
executed

tag
avail

tag
dead

Item
dead

How to think about CnC execution

State: Monotonically increasing

• Set of instances with any attribute
• Set of attributes of those instances
• Contents of available items

Analyzability

Characteristics that support analyzability

• Dynamic single assignment

• No side-effects

• Deterministic

• Optional tag functions and edge annotations

• Both control and data dependences are explicit

• Serializable

What might the analysis support

• Determine when data item is dead [DAMP 2009: Zoran Budimlic, et. al.]

• Optimize generic runtime [CPC 2013: Kath Knobe, Zoran Budimlic]

• Mapping computation steps to time/platform [PDP 2013: Frank Schlimbach, et. Al.]

• Mapping data items to memory (or to each other) [Europar2012: Dragos Sbirlea, et. al.]

Productivity

• Deterministic

• Potential for tools at the level the domain
expert understands

-Computation steps, data item in the domain spec
(not processors, threads, …)

Distributed memory

• Unified language (not MPI + x)

-Still just graph of steps, items and tags

• User can provide functions for mapping

-Functions are isolated from code

-Either focus on distribution of data or of computation

46

Portability

-Memory

Single processor

Shared memory

Distributed memory (Intel)

-Heterogeneous platforms

CPU/MIC (Intel – not released)

CPU/GPU/FPGA (Rice)

Outline

• Intro

• Checkpoint/restart

• Tuning language

• Adaptive computing

Item
avail

step
controlReady

step
ready

step
dataReady

step
executed

tag
avail

tag
dead

Item
dead

Execution frontier:
 leading edge: monotonically increasing

 trailing edge: remove irrelevant instances
 dead items, dead tags, executed steps

leading edge: monotonically increasing
trailing edge: remove irrelevant instances
 dead items, dead tags, executed steps

Execution frontier

•An execution frontier is a CnC program state:

-The set of attributes of instances of steps, tags and
items

-The contents of items (available but not dead)

-No state of the runtime data structures

Checkpoint/restart

• Continuously, asynchronously save state changes

• No user involvement required

-User can optimize

• No barriers

• No synchronization

• Can restart from any saved state

-On a different machine

-On a different configuration

-On a different CnC runtime

-…

51

Nick Vrvilo (Rice)

Outline

• Intro

• Checkpoint/restart

• Tuning language

• Adaptive computing

Domain spec / tuning spec

• Separate specs

-One domain spec / multiple tuning specs

• Domain spec/ tuning spec

-Same person / different time

-Different people with different expertise

-Person / automatically generated tuning spec

• Distribution functions for distributed CnC

-Currently restricted to where (not when)

-Currently restricted to where at the node level

53

Tuning

Tuning – Sanjay Chatterjee, Zoran Budimlic, Mike
Burke (Rice)

• Parallelism is there from CnC

• Load balance is there from work stealing
runtimes

• Issue is locality

- Locality => time and space (across the platform)

- No benefit if too far away in either time or space

Hierarchical affinity groupsps

• Affinity groups – For locality
-Foundation:

Doesn’t distinguishing between spatial and temporal
locality

 (supports space-time locality)

-On top of this foundation:

we allow (but don’t require) time-specific and space-
specific control

• Hierarchical affinity groups
-Computations in the same low-level group have tight
affinity

-Computations in the same higher-level group have a
weaker affinity

Three phase methodology
1: Hierarchical affinity structure

Update

COMPUTE STEP

Trisolve

COMPUTE STEP

Cholesky

COMPUTE STEP

AFFINITY GROUP

GroupC

AFFINITY GROUP

GroupTU

2: Distinguish among instances

Update: col, row, iter

COMPUTE STEP

Trisolve: row, iter

COMPUTE STEP

Cholesky: iter

COMPUTE STEP

AFFINITY GROUP

GroupC: iter

AFFINITY GROUP

GroupTU: row, iter

3: Specify the instances of each affinity

Update: col, row, iter

COMPUTE STEP

Trisolve: row, iter

COMPUTE STEP

Cholesky: iter

COMPUTE STEP

AFFINITY GROUP

GroupC: iter

AFFINITY GROUP
GroupTU: row, iter

CONTROL TAG

 CholeskyTag: iter

CONTROL TAG
TrisolveTag: row, iter

Platform tree

…

…

Aaa

B

c

Aaa

B

c

Aaa

B

c

Aaa

B

c

Aaa

B

c

Levels correspond to levels in the platform hierarchy, e.g.,
sockets, address spaces, …

Execution model: Tuning tree

…

…

Shape conforms to platform
Queue

Overview of tuning execution model

• Put top-level group at the top of tree

• Break it into its lower-level components

• Put these components down to children within
the parent node

• Bottom level feeds into our normal runtime

• Acts as a staging area holding computation
back

…

…

Tuning execution

A

 A, 1 A,2 A,3

…

…

Tuning execution

A, 1

A,2 A,3

…

…

Spatial locality

A, 1

A,2 A,3

A

 A, 1 A,2 A,3

Outer group at a node.

Components of Outer Group stay within children of that node

…

…

Temporal locality

A

 A, 1 A,2 A,3

B

 B, 1 B,2 B,3

…

…

Temporal locality

A, 1

A,2 A,3

B

 B, 1 B,2 B,3

…

…

Temporal locality

B, 3

B,1

A, 1

A,2

A,3

If group A arrives at a node before group B

The components group A arrive at the child node before the
components of group B

B,2

Space-specific tuning

Update: col, row, iter

COMPUTE STEP

Trisolve: row, iter

COMPUTE STEP

Cholesky: iter

COMPUTE STEP

AFFINITY GROUP

GroupC: iter

AFFINITY GROUP
GroupTU: row, iter

CONTROL TAG

 CholeskyTag: iter

CONTROL TAG
TrisolveTag: row, iter

• Replicate components of this group across nodes

• Distribute components of this group across sockets

• Distribute components of this group across nodes via func()

ordered unordered

Non-overlapping serial/barrier exclusive

overlapping priority arbitrary

 Relative time among components within a group.

Time-specific mappings

Productivity - tuning

Isolate domain and tuning

For example: Cholesky we have one domain spec and 5 or 6
tuning specs

• May not need tuning

• Domain expert can focus on chemistry, image processing, …

- doesn’t need to see the tuning spec

• Tuning expert can focus on performance

- doesn’t need to wade through domain code

Interactions? Sure. But at the level of the specs

Outline

• Intro

• Checkpoint/restart

• Tuning language

• Adaptive computing

72

Hierarchy

TrisolveTag: row, iter

CholeskyTag: iter

UpdateTag: col, row, iter

CONTROL TAG

CONTROL TAG

CONTROL TAG

Cholesky: iter

Trisolve: row, iter

Update: col, row, iter
COMPUTE STEP

COMPUTE STEP

COMPUTE STEP

Array : col, row, iter

DATA ITEM

73

Hierarchical domain spec

main spec

TrisolveTag: row, iter

CholeskyTag: iter

UpdateTag: col, row, iter

CONTROL TAG

CONTROL TAG

CONTROL TAG

Cholesky: iter

Trisolve: row, iter

Update: col, row, iter

COMPUTE STEP

COMPUTE STEP

COMPUTE STEP

Array: iter

DATA ITEM

COMPUTE STEP

Each application node in the hierarchy has the
form of a full application

This hierarchy doesn’t imply that one iteration
needs to complete before the next begins

COMPUTE STEP

COMPUTE STEP

74

Hierarchical domain spec

TrisolveTag: row

CONTROL TAG

Array: row

DATA ITEM

75

Hierarchical domain spec spec

UpdateTag: col

CONTROL TAG

Update: col

COMPUTE STEP

Array : col

DATA ITEM

Motivation:
Highly adaptive computing for exascale

Critical exascale issues (based on UHPC and X-Stack)

Require the ability to move currently executing parts of the app to another
place in the platform or to a later time.

• Resilience

-Fragile components

-Lots of them

• Power management

-Power components on/off

-Power components up/down

• Self-aware computing

-Modify mapping based on feedback

• Change of goals

-Between power and time to solution, for example

Abstract view of application hierarchy

iter()

rowIter()

colRowIter()

A node at any level has the form of a full application
Input, computation, output

Abstract view of the platform hierarchy
 A node has the form of a full machine at each level:

a subtree of the memory hierarchy + set of cores

Hierarchical
platform node

Abstract app maps to abstract platform

Assume the shape of platform hierarchy corresponds
exactly to the shape of the application

The mapping is direct

iter()

rowIter()

colRowIter()

Actual mapping
many application nodes => a single platform node

iter(8)

rowIter(2,8) …

colRowIter(32,2,8)
colRowIter(33,2,8)

rowIter(1,8)
…

colRowIter(34,2,8)
colRowIter(35,2,8)

Hierarchical checkpoint/restart

Hierarchical application

Hierarchical checkpoint/restart

Checkpoint for a graph is held with its parent step

Hierarchical checkpoint/restart

Looks like a full
application

Looks like a
checkpoint for a
full application

Hierarchical checkpoint/restart

1-level Checkpoint
Fault
Fullstop
Restart

Hierarchical checkpoint/restart

1-level Checkpoint
Fault
Fullstop
Restart

Hierarchical checkpoint/restart

1-level Checkpoint
Fault
Fullstop
Restart

Hierarchical checkpoint/restart

1-level Checkpoint
Fault
Fullstop
Restart

Hierarchical checkpoint/restart

Hierarchical checkpoint/restart

Hierarchical checkpoint/restart

Hierarchical checkpoint/restart

From above: step simply looks like it took longer than expected.

Checkpoint with full stop at one node looks like checkpoint/continue
for the whole program

Hierarchical checkpoint/restart
elsewhere

The application nodes are at real platform nodes

Hierarchical checkpoint/restart
elsewhere

- Key: checkpoint is associated with the program hierarchy
Not with the platform hierarchy

- Note that the move causes a locality glitch

Hierarchical checkpoint/restart:
Summary

• Each hierarchical program node looks like a whole
program

• Each hierarchical checkpoint looks like a whole
checkpoint

• Can restart an application node from a checkpoint at
any level

- at another platform node

- at a future time

• Checkpoint/stop/restart at a node

 => Checkpoint/continue of whole app

Adaptivity

-If we can move parts of an executing application to
another place in the platform or to a later time
because of failure

-We can move parts of an executing application
because we choose to:

Power management

- Power components on/off

- Power components up/down

Self-aware computing

- Modify mapping based on feedback

Change of goals

- Between power and time to solution, for example

Analyzability

Characteristics that support analyzability

• Dynamic single assignment

• No side-effects

• Deterministic

• Optional tag functions and edge annotations

• Both control and data dependences are explicit

• Serializable

What might the analysis support

• Determine when data item is dead [DAMP 2009: Zoran Budimlic, et. al.]

• Optimize generic runtime [CPC 2013: Kath Knobe, Zoran Budimlic]

• Mapping computation steps to time/platform [PDP 2013: Frank Schlimbach, et. Al.]

• Mapping data items to memory (or to each other) [Europar2012: Dragos Sbirlea, et. al.]

Portability

-Memory

Single processor

Shared memory

Distributed memory (Intel)

-Heterogeneous platforms

CPU/MIC (Intel – not released)

CPU/GPU/FPGA (Rice)

Productivity

• Deterministic

• Separation of domain spec from tuning spec

• Potential for tools at the level the domain
expert understands

-Computation steps, data item in the domain spec
(not processors, threads, …)

CnC on Intel’s WhatIf site:

http://software.intel.com/en-us/articles/intel-concurrent-collections-
for-cc

CnC on Rice’s Habanero site:

https://wiki.rice.edu/confluence/display/HABANERO/CNC

CnC’13 workshop

Sept 23-24 Co-located with LCPC’13 in Santa Clara, CA

Call will appear on www.lcpcworkshop.org

Open CnC weekly meeting discussion

To get on mailing list send mail to kath.knobe@intel.com

99

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or
components and reflect the approximate performance of Intel products as measured by those
tests. Any difference in system hardware or software design or configuration may affect actual
performance. Buyers should consult other sources of information to evaluate the performance of
systems or components they are considering purchasing. For more information on performance
tests and on the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge,
Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro,
Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium,
Pentium Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon,
and Xeon Inside are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012. Intel Corporation.

101

http://intel.com/software/products

http://www.intel.com/software/products
http://intel.com/software/products

Optimization Notice

102

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations

that are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3, and SSSE3 instruction

sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any

optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this

product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel

microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and

Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

