CnC for high performance
computing

Kath Knobe
Intel SSG

Thanks

AFrank Schlimbach i Intel

AVivek Sarkar and his group I Rice University
ADARPA UHPC (Runnemede)

ADOE X-Stack (Trilacka Glacier)

Outline

Alntro

A Checkpoint/restart Productivity

ATuning language Analyzability
J fahglag Protability

A Adaptive computing Adaptivity

The big Iidea

Donot specify what operations r
Difficult and depends on target

Specify only required orderings
Easy, known and depends only on application

Exactly 2 constraints on parallelism

A Producer must execute before consumer

4 Producer - Consumer)

COMEU S S I

Exactly 2 constraints on parallelism

A Producer must execute before consumer

A Controller must execute before controllee

4 Producer - Consumer Y4 Controller - Controllee)

COMPUTE ST# COMPUTE ST COMPUTE ST CONTROL TAS

Example app:
Cell tracker

Representations

Graphical

COMPUTE S8

COVEUIE S8 COMPUTE ST CONTROL TAS COMPUTE 518

textual

computel(j, k) ->datafj, k] -> compute2(j, k)

compute3(row, col) -> controlT <row, col> -> compute2(row, col)

API

Language dependent 1 one API call per graph edge

How to think about control tags

A Control tag: just an identifier in the form of a tuple

A Examples
-For matrix Compmation CONTROL TAS COMPUTE 518
matrixTags <row, col, iter> - npute
-Set of images in video
ImageTags <imagelD >
- Set of images in video that contain faces
faceTags <imagelD >

A Very much like an iteration loop and its body

- For each instance in the collection controlT the associated
iInstance of compute 4 will execute with access to its tag value.

Pair CnC with computation language
Sample step code in C++

/I Performs symmetric rank - k update of the submatrix .
/I Input to this step is the given submatrix and the output of the previous step.
int update_step :execute(const triple &t, cholesky context &c) const
{
const . . . t int i=t2];
<ot 9€1 reads in an instance of a data item
tile_type 7L1 block, L2_block;
c.tiles.get (triple(k, j, 1), A _block); // Getthe inputtile.
if(i==j){ // Diagonal tile.
c.tiles.get (triple(k+1, i, k), L1 block); I/l both the tiles are the same.
}else{ // Non - diagonal tile.
c.tiles.get (triple(k+1, i, k), L2 block); /I Get the first tile.
c.tiles.get (triple(k+1, j, k), L1_block); /I Get the second tile.
}
/I A block is a copy, a local variable, so we can overwrite at will
for(int b =0; jb <b; jb++){
for(int kb =0, kb <b; kb++){
} | put writes an instance of a data item
}
c.tiles.put (triple(k+1, j, i, A block); // Write the output at the next iteration.
return CnC:: CNC_Success
}

Status

Intel Existing support
C++ Distributed memory
Rice Heterogeneous platforms
Java, C, Scala, Python, Babel , ¢é CPUGPU/FPGA
Haskell , € Some of the ideas here
Participates in - Exist
XStack Traleika Glacier -Are in design
UPHC Runnemede - Are in implementation

As part of X -Stack
Will have CnC on Open
Community Runtime (OCR)

|Isolation / mediation

= . — B - . . "'-.\
COMFLIL STER CONTROL TAG ; COMRIL STER ;
------- >

|solation [mediation

SOMJRAL ETER CONTROL TAG OV IE 5 7

& COMPUTE STEF

Controller: detectFace <> doesnot need to know

|solation / mediation

S COMPUTE STEP CONTROL TAG S COMPUTE STEF

Controllee : recogFace<> doesnodé6t need to know

The Contract

Alf the programmer guarantees
- Steps are atomic
Get inputs, compute, put outputs
- Steps have no side effects

- Item obey dynamic single assignment (DSA) rule:

Each given item name & tag is associated with a unique
value (no overwriting)

AThen CnC guarantees
- Determinism

A But
Can do what you want. CnC will handle scheduling.

The Contract

A If the programmer guarantees

- Steps are atomic
Get inputs, compute, put outputs

- Steps have no side effects

- Item obey dynamic single assignment (DSA) rule:

Each given item name & tag is associated with a unique value
(no overwriting)

A Then CnC guarantees
- Determinism

A But
- Can do what you want. CnC will handle scheduling.

A The rest of the talk assumes the contract

A way to specify coordination of parts

Independent of:

A The computation language within the step
- existing: C, C++, Java, Scala, Has kel |, Pyt hon, Fortran (via Ba

A Parallelism within a computation
A Tuning

- the distribution across the platform
- the ordering in time (other than semantic ordering requirements)

A Type of runtime

- static/dynamic choice of grain/distribution/schedule

A Underlying support
- TBB, Qthreads , pthreads , Habenaro, MPI , Open Community Runti me (

A The memory model

A The form in which the spec written
- graphical interface
- a textual representation of the graph
- an API describing the graph.

A word about migration

ACan use your current computation is C, C++,
Fortran, Java, é

-Package it up a bit differently

ABottom -up
- start with a small piece of your app
-create and execute a CnC graph
-continue with the rest of your application

ATop-down

-Break the whole app in to a small number of very
large CnC chunks

-As needed, break some of those into smaller pieces

High -level declarative specification
allows for a wide variety of runtime approaches

grain distribution schedule
static static static
static static dynamic
static dynamic dynamic
static dynamic dynamic
Georgia dynamic dynamic dynamic
Tech

CnC/ TStreams

Three example specs

ACholesky 7 all about data flow

AFace detection 1 all about control flow

Alteration 1 about both control and data flow

Cholesky factorization

Cholesky factorization

Cholesky

Cholesky factorization

Cholesky

Cholesky

Cholesky factorization

Cholesky

1. White board (how people think)

computations

data

producer/consumer relations
/O

COMPUTE STEP

&Cholesky \

COMPUTESTEP | \
&Trisolve

2. Distinguish among the instances

COMPUTE STEP ‘

&Cholesky: iter

| COMPUTESTER P |

COMPUTE STEP

&Update: col, row, iter

3: What are the control tag collections

s I EP D
(Cholesky: iter \
Trisolve: row, iter
' ' (COMPUTESTERER . \
U

pdate col, row, iter

4: Who produces control

i : EP‘ N
(Cholesky: iter \

, _ —
Trisolve: row, iter

|

mtsﬁ PER.. \
ijdate col, row, iter

Sample user application
face detection

T e
Classiflierl(F))—»6
QlassifierZ(F))——vé

Qc@myé”'

Conditional execution
e
Classiflierl(F) ———»6

Classifier2(F)

