
Beyond UPC!

Kathy Yelick

EECS Professor, UC Berkeley

Associate Laboratory Director for Computing Sciences
Lawrence Berkeley National Laboratory

1500+ publications per year

Petaflop and Petabyte systems for science

The National Energy Research Scientific
Computing Center Enables Science

25 applications =
 2/3s of workload

Breakdown
of NERSC
Workload

4500 users ~600
applications

Requirements For Future

3

http://www.nersc.gov/science/requirements-reviews/final-
reports/

•  2x gap in demand vs.
capability across centers

•  10x gap by 2015 (NERSC)
•  ~650 applications with these

programming models
-  75% Fortran, 45% C/C++,

10% Python
-  85% MPI, 25% with OpenMP
-  10% PGAS or global objects

These are self-reported, likely
low and may miss future users

http://science.energy.gov/ascr/news-and-
resources/

Computing = Data Analysis and Simulation

Experimentation Theory

Simulation
Data Analysis

Computing

4"

Data analysis is equally important in Science

Experimentation Theory

Simulation Data Analysis

Computing

Growth in Sequencers,
CCDs, sensors, etc.

5"

Programming Challenges and Solutions

Message Passing Programming
Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

6"

Global Address Space Programming
Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries

6/28/13"

Science Across the “Irregularity” Spectrum

Massive
Independent

Jobs for
Analysis and
Simulations

Nearest
Neighbor

Simulations

All-to-All
Simulations

Random
access, large
data Analysis

7"

Data analysis and simulation

6/28/13"

PGAS Languages

• Global address space: thread may directly read/write
remote data

• Convenience and low overhead
• Partitioned: data is designated as local or global

• Locality and scalability

G
lo

ba
l a

dd
re

ss
 s

pa
ce
!

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"

6/28/13" 9"

 UPC: A PGAS language
based on C 

 
See CS267 UPC Lectures for more details  

 
Or attend SC13 tutorial on advanced UPC!!

6/28/13" 10"

UPC Execution Model

•  A number of threads working independently in a SPMD
fashion
-  Number of threads specified at compile-time or run-time;

available as program variable THREADS
-  MYTHREAD specifies thread index (0..THREADS-1)
-  upc_barrier is a global synchronization: all wait
-  There is a form of parallel loop for distributing work

•  UPC has locks to protect shared variables: upc_lock_t
upc_lock_t *myLock = upc_all_lock_alloc();
upc_lock(myLock)
 critical region
upc_unlock(myLock)
upc_lock_free(myLock);

6/28/13" 11"

Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

- Area of square = r2 = 1
- Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
• Compute ratio:

- # points inside / # points total
-  π = 4*ratio

• Assume serial function:
int hits ()
-  for x, y, return 1 if x2 + y2 < 1, 0 otherwise r =1

6/28/13" 12"

Private vs. Shared Variables in UPC

• Normal C variables and objects are allocated in the private
memory space for each thread.

• Shared variables are allocated only once, with thread 0
 shared int ours; // use sparingly: performance
 int mine;
 int one4each [THREADS]; // cyclic layout

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

one4each

6/28/13" 13"

Pi in UPC: Shared Memory Style

• Parallel computing of pi, without the bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_hits, my_trials = 0;
 upc_lock_t *hit_lock = upc_all_lock_alloc();
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);
 }

create a lock

accumulate hits
locally

accumulate
across threads

6/28/13" 14"

Pi in UPC: Shared Array Version

• Alternative fix to the race condition
• Have each thread update a separate counter:

- But do it in a shared array
- Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {
 … declarations and initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 for (i=0; i < THREADS; i++) hits += all_hits[i];
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
}

all_hits is
shared by all
processors

update element
with local affinity

6/28/13" 15"

Common Uses for UPC Pointer Types

int *p1;
•  These pointers are fast (just like C pointers)
•  Use to access local data in part of code performing local work
•  Often cast a pointer-to-shared to one of these to get faster

access to shared data that is local
shared int *p2;
•  Use to refer to remote data
•  Larger and slower due to test-for-local + possible

communication
•  Typical implementation has a thread ID + address + phase
int *shared p3;
•  Not recommended
shared int *shared p4;
•  Use to build shared linked structures, e.g., a linked list

6/28/13" 16"

UPC Arrays and Collectives  
 

Gather threads together for data-parallel
style operations!

6/28/13" 17"

Pi in UPC: Data Parallel Style

• The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

• Use a reduction for better scalability

 #include <bupc_collectivev.h>
 // shared int hits;
 main(int argc, char **argv) {
 ...
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 my_hits = // type, input, thread, op
 bupc_allv_reduce(int, my_hits, 0, UPC_ADD);
 // upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*my_hits/trials);
 }

 Berkeley collectives
no shared variables

barrier implied by collective

6/28/13" 18"

Vector Addition with upc_forall

#define N 100*THREADS

shared

void main() {

 int i;
 upc_forall(i=0; i<N; i++; i)

 sum[i]=v1[i]+v2[i];
}

• The vector addition can be written as follows
• The code would be correct but slow if the affinity

expression were i+1 rather than i.
• Equivalent code could use “&sum[i]” for affinity
• Better style: if sum layout changes, still get good affinity

&sum[i]

int v1[N], v2[N], sum[N]; [100]

6/28/13" 19"

Distributed Arrays Directory Style

• Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));

directory

• These are also more general:
• Multidimensional, unevenly distributed
• Ghost regions around blocks

physical and
conceptual
3D array
layout

6/28/13" 20"

Performance of
UPC!

Berkeley UPC Compiler !

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code UPC Compiler
Used by bupc and

gcc-upc

Used by Cray
UPC, CAF,

Chapel, Titanium,
and others

Avoiding Synchronization in Communication

• Two-sided message passing (e.g., MPI) requires a
matching receive to identify memory address to put data
- Couples data transfer with synchronization (but it ain’t free!)

• Global address space decouples synchronization
- Separately synchronize as needed
- Never have to say “receive”

• NB: MPI 1-sided can have same performance advantages

address

message id

data payload

data payload
one-sided put message

two-sided message

network
 interface

memory

host
CPU

22"

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8 32 128 512 2048 8192 32768 131072 524288 2097152

B
an

dw
id

th
 (M

B
/s

)

Msg. size

Berkeley UPC

Cray UPC

Cray MPI

Bandwidths on Cray XE6 (Hopper)

6/28/13" 23"

0

2

4

6

8

10

12

UPC/MPI

PGAS’s One-sided communication has
performance advantages

0%
20%
40%
60%
80%

100%
120%
140%

LU ScPk Linpack 3D FFT 3D FFT GTS Shift 3D FFT Impact-T MILC GTS Shift

Altix : 16 X1 : 128 IB : 256 XT4 : 1K XT4 : 16K BG/P : 16K XE6 : 16K XE6 : 32K XE6 : 124K

Speedup of PGAS over MPI

Performance advantages for PGAS over MPI from
•  Lower latency and overhead
•  Better pipeline (overlapping communication with communication)
•  Overlapping communication with computation
•  Use of bisection bandwidth

24"

PyGAS: Combine two popular ideas

• Python
- No. 6 Popular on http://langpop.com and extensive

libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX
- 10% of NERSC projects use Python

• PGAS
- Convenient data and object sharing

• PyGAS : Objects can be shared via Proxies with operations
intercepted and dispatched over the network:

•  Leveraging duck typing:
•  Proxies behave like original objects.
•  Many libraries will automatically work.

num = 1+2*j
 = share(num, from=0)

print pxy.real # shared read
pxy.imag = 3 # shared write
print pxy.conjugate() # invoke

Antisocial Parallelism: Avoiding,
Hiding and Managing Communication!

Kathy Yelick

EECS Professor, UC Berkeley

Associate Laboratory Director for Computing Sciences

Lawrence Berkeley National Laboratory

Challenge #1: Computing is energy-constrained

At ~$1M per MW, energy costs are substantial
•  1 petaflop in 2008 used 3 MW
•  1 exaflop in 2018 possible in 200 MW with “usual” scaling
• Goal: 1 exaflop in 20 MW = 20 pJ / operation

goal

usual
scaling

2005 2010
2015 2020
27"

The “New Normal” for Computer Architecture

1.E 02

1.E 01

1.E+00

1.E+01

01
/0
1/
92

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

01
/0
1/
16

M
em

or
y/
G
F(
Rm

ax
)!(
GB

)

Heavyweight Lightweight

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

01
/0
1/
92

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

01
/0
1/
16

KW

Heavyweight Lightweight Hybrid

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

01
/0
1/
92

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

01
/0
1/
16

Rm
ax

!(G
flo

ps
/s
ec
)

Heavyweight Lightweight

Hybrid Trend:!CAGR=1.88

(a)!Growth!in!Rmax

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

01
/0
1/
92

01
/0
1/
96

01
/0
1/
00

01
/0
1/
04

01
/0
1/
08

01
/0
1/
12

01
/0
1/
16

#!
of

!C
or
es

Heavyweight Lightweight

Hybrid Trend:!CAGR=1.67

(b)!Growth!in!Cores

(c)!Growth!in!System!Power (d)!Decrease!in!Relative!Mmeory Capacity

Figure 4.1: Historical Trends.

Feb. 28, 2013 viii

’92 ’96 ’00 ‘04 ‘08 ‘12 ‘16

12

10

 8

6

4

2

Megawatts per
machine

(Kogge/Shalf)

New Processors Means New Software

•  Exascale will have chips with thousands of tiny processor cores,
and a few large ones
- Sea of lighweight cores with heavyweight “service” nodes
- Or lightweight cores as accelerators to CPUs

•  Low power memory and storage technology are essential
- Probably with more software management to avoid waste
28"

Interconnect
Memory
Processors

Server Processors Manycore

130 MW
75 MW

25 MW

Low power memory
and interconnect

Challenge #2: Nodes with Heterogeneity and Locality

•  Local store, explicitly managed memory
- More efficient (get only what you need) and simpler hardware

• Split memory between CPU and “Accelerators”
- Driven by market history and simplicity, but may not last
- Communication: The bus is a significant bottleneck.

• Co-Processor interface between CPU and Accelerator
- Default is on CPU, only run “parallel” code in limited regions
- Why are the minority CPUs in charge?

Avoid vicious cycle: Programming model should be designed
for future, not for current/past constraints

Cell phone
processor (0.1
Watt, 4 Gflop/s)

Server processor
(100 Watts, 50 Gflop/s)

•  Case for heterogeneity
–  Many small cores and SIMD for

energy efficiency; few CPUs for OS / speed

29"

Memory Speed vs. Capacity Conundrum

•  Because of cost and power issues, we cannot have both high
memory bandwidth and large memory capacity

•  The colored region is feasible in 2017

Compute intensive architecture focus on upper-left
Data Intensive architecture focus on lower right

Bandwidth\Capacity	 16	 GB	 32	 GB	 64	 GB	 128	 GB	 256	 GB	 512	 GB	 1	 TB	
4	 TB/s	 	 	 	 	 	 	 	 	 	 	 	 	
2	 TB/s	 Stack/PNM	 	 	 	 	 	 	 	 	 	 	 	 	
1	 TB/s	 	 	 Interposer	 	 	 	 	 	 	 	 	 	

512	 GB/s	 	 	 	 	 	 	 HMC	 organic	 	 	 	 	
256	 GB/s	 	 	 	 	 	 	 	 	 	 	 	 	 NVRAM	 	
128	 GB/s	 	 	 	 	 	 	 	 	 	 	 DIMM	 	 	

optical

block

Cost (increases for higher capacity and cost/bit increases with bandwidth)

P
o
w
e
r

Slide source: John Shalf

Compiler-free “UPC++” eases interoperability

global_array_t<int, 1> A(10); // shared [1] int A[10];

L-value reference (write/put)
A[1] = 1; // A[1] -> global_ref_t ref(A, 1); ref = 1;

R-value reference (read/get)
int n = A[1] + 1; // A[1] -> global_ref_t ref(A, 1); n = (int)ref + 1;

6/28/13" 31"

0.5

2

8

32

128

1 2 4 8 16 32 64 128 256

Sp
ee

du
p

Number of GPUs

Cray XK6 Performance Speedup

Matmul
FFT
SpMV

0.00

0.01

0.10

1 2 4 8 16 32 60

G
U

PS

Num. of Processes

Giga-Updates Per Second on MIC
Cluster

DEGAS C++
UPC

One-sided communication works everywhere

Support for one-sided communication (DMA) appears in:
•  Fast one-sided network communication (RDMA, Remote

DMA)
•  Move data to/from accelerators
•  Move data to/from I/O system (Flash, disks,..)
•  Movement of data in/out of local-store (scratchpad) memory

PGAS programming model

 *p1 = *p2 + 1;
 A[i] = B[i];

 upc_memput(A,B,64);

It is implemented using one-sided
communication: put/get

Vertical PGAS

x: 1
y:

x: 5
y:

x: 7
y: 0

Shared
partitioned
on-chip

l: m: Private on-chip

Shared
off-chip
DRAM or
NVRAM

• New type of wide pointer?
-  Points to slow (offchip memory)
- The type system could get unwieldy quickly

Challenge #3: Synchronization is Expensive

• Machines will have Frequent
Faults and “Performance
Instability”

• Do all applications become
“irregular”?

•  Locality-Load balance trade-off
- Most work on dynamic

scheduling is inside a
shared memory node
- Largest variability will be

between nodes

34"

Brian van Straalen, DOE Exascale Research
Conference, April 16-18, 2012. Impact of persistent
ECC memory faults.

Event Driven LU in UPC

• DAG Scheduling in a distributed (partitioned) memory context
• Assignment of work is static; schedule is dynamic
• Ordering needs to be imposed on the schedule

- Critical path operation: Panel Factorization
• General issue: dynamic scheduling in partitioned memory

- Can deadlock in memory allocation
- “memory constrained” lookahead

some edges omitted

Uses a Berkeley extension to
UPC to remotely synchronize

6/28/13" 36"

UPC HPL Performance

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
- ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

•  n = 32000 on a 4x4 process grid
- ScaLAPACK - 43.34 GFlop/s (block size = 64)
- UPC - 70.26 Gflop/s (block size = 200)

X1 Linpack Performance

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
F

lo
p

/s

MPI/HPL

UPC

Opteron Cluster
Linpack

Performance

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix Linpack
Performance

0

20

40

60

80

100

120

140

160

Alt/32

G
F

lo
p

/s

MPI/HPL

UPC

• MPI HPL numbers
from HPCC
database

• Large scaling:
• 2.2 TFlops on 512p,
• 4.4 TFlops on 1024p
(Thunder)

Joint work with Parry Husbands!

Two Distinct Parallel Programming Questions

• What is the parallel control model?

• What is the model for sharing/communication?

 synchronization may be coupled (implicit) or separate (explicit)

data parallel
(singe thread of control)

dynamic
threads

single program
multiple data (SPMD)

shared memory
load
store

send

receive

message passing

37"

PGAS load/store with partitioning for locality,
but need a “signaling store” for producer
consumer parallelism

SPMD “default” plus data parallelism through
collectives and dynamic tasking within nodes
or between nodes through libraries

Hierarchical SPMD (demonstrated in Titanium)

• Thread teams may execute distinct tasks
partition(T) {
 { model_fluid(); }
 { model_muscles(); }
 { model_electrical(); }
}

• Hierarchy for machine / tasks
- Nearby: access shared data
- Far away: copy data

• Advantages:
- Provable pointer types
- Mixed data / task style
- Lexical scope prevents some deadlocks
38"

B	
C	

D	

A	 1	

2	 3	 	 4	

span	 1	
(core	 local)	
span	 2	
(processor	 local)	
span	 3	
(node	 local)	
span	 4	
(global)	

Single Program Multiple Data
(SPMD) is too restrictive

Hierarchical machines à Hierarchical programs

• Option 1: Dynamic parallelism creation
- Recursively divide until… you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

• Option 2: Hierarchical SPMD with “Mix-ins”
- Hardware threads can be grouped into units hierarchically
- Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

Option 1 spreads threads, option 2 collecte them together

0	 3	 1	 2	

4	

5	

6	

7	

0	

1	

2	

3	

•  Hierarchical memory
model may be necessary
(what to expose vs hide)

•  Two approaches to
supporting the
hierarchical control

Challenge #4: Communication is expensive

1

10

100

1000

10000

Pi
co

Jo
ul

es

now
2018

Communication is expensive…
 … time and energy

Cost components:

•  Bandwidth: # of words
•  Latency: # messages

Strategies

•  Overlap: hide latency
•  Avoid: algorithms to reduce bandwidth use and

number of messages (latency)

Annual improvements
Flops BW Latency

59%

Network 26% 15%
DRAM 23% 5%

Hard to change: Latency is physics; bandwidth is money!

40"

On-Chip

Off-Chip

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

single-precision peak

double-precision peak

single-precision peak

double-precision peak

RTM/wave eqn.

RTM/wave eqn.

7pt Stencil
27pt Stencil

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

DP add-only

DP add-only

SpMV
SpMV

7pt Stencil

27pt Stencil
DGEMM

DGEMM

GTC/chargei

GTC/pushi

GTC/chargei

GTC/pushi

Autotuning Gets Kernel Performance Near Optimal

• Roofline model captures bandwidth and computation limits
• Autotuning gets kernels near the roof

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…

Lessons Learned

• Good news
- Although careful tuning is necessary
- Autotuning helps save programmer time

• But many kernels are bandwidth limited
- Stencils
- Sparse matrix-vector multiply
- Dense matrix-vector multiply

• A problem for local memory and network

6/29/13" 42"

Avoiding Communication in Iterative Solvers

• Consider Sparse Iterative Methods for Ax=b
-  Krylov Subspace Methods: GMRES, CG,…

• Solve time dominated by:
- Sparse matrix-vector multiple (SPMV)

•  Which even on one processor is dominated by
“communication” time to read the matrix

- Global collectives (reductions)
•  Global latency-limited

• Can we lower the communication costs?
- Latency: reduce # messages by computing multiple

reductions at once
- Bandwidth to memory, i.e., compute Ax, A2x, … Akx

with one read of A Joint work with Jim
Demmel, Mark Hoemman,
Marghoob Mohiyuddin

1 2 3 4 … … 32
x

A·x

A2·x

A3·x

Communication Avoiding Kernels

The Matrix Powers Kernel : [Ax, A2x, …, Akx]

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

•  Idea: pick up part of A and x that fit in fast memory, compute

each of k products
•  Example: A tridiagonal matrix (a 1D “grid”), n=32, k=3
•  General idea works for any “well-partitioned” A

1 2 3 4 … … 32

x

A·x

A2·x

A3·x

Communication Avoiding Kernels
(Sequential case)

The Matrix Powers Kernel : [Ax, A2x, …, Akx]

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Sequential Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Saves bandwidth (one read of A&x for k steps)
•  Saves latency (number of independent read events)

Step 1 Step 2 Step 3 Step 4

1 2 3 4 … … 32
x

A·x

A2·x

A3·x

Communication Avoiding Kernels:
(Parallel case)

The Matrix Powers Kernel : [Ax, A2x, …, Akx]
•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Parallel Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Each processor works on (overlapping) trapezoid
•  Saves latency (# of messages); Not bandwidth
 But adds redundant computation

Proc 1 Proc 2 Proc 3 Proc 4

Matrix Powers Kernel on a General Matrix

• Saves communication for “well partitioned” matrices
•  Serial: O(1) moves of data moves vs. O(k)
•  Parallel: O(log p) messages vs. O(k log p) 47"

Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin

For implicit memory
management (caches)
uses a TSP algorithm
for layout

Akx has higher performance than Ax

Speedups on Intel Clovertown (8 core)

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

Minimizing Communication of GMRES to solve Ax=b

•  GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2

Standard	 GMRES	
	 	 for	 i=1	 to	 k	
	 	 	 	 	 w	 =	 A	 ·∙	 v(i-‐1)	 	 	 …	 SpMV	
	 	 	 	 	 MGS(w,	 v(0),…,v(i-‐1))	
	 	 	 	 	 update	 v(i),	 H	
	 	 endfor	
	 	 solve	 LSQ	 problem	 with	 H	
	

CommunicaRon-‐avoiding	 GMRES	
	 	 	 W	 =	 [v,	 Av,	 A2v,	 …	 ,	 Akv]	
	 	 	 [Q,R]	 =	 TSQR(W)	 	 	
	 	 	 	 	 	 	 	 	 	 …	 	 “Tall	 Skinny	 QR”	
	 	 	 build	 H	 from	 R	 	
	 	 	 solve	 LSQ	 problem	 with	 H	
	
	
	
	 Sequential case: #words moved decreases by a factor of k

Parallel case: #messages decreases by a factor of k

• Oops	 –	 W	 from	 power	 method,	 precision	 lost!	

TSQR: An Architecture-Dependent Algorithm

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R10	
R20	
R30	

R01	

R11	

R02	
Parallel:	

W	 =	 	

W0	
W1	
W2	
W3	

R01	 R02	

R00	

R03	

SequenRal:	

W	 =	 	

W0	
W1	
W2	
W3	

R00	
R01	

R01	

R11	
R02	

R11	

R03	

Dual	 Core:	

Can	 choose	 reducRon	 tree	 dynamically	
MulRcore	 /	 MulRsocket	 /	 MulRrack	 /	 MulRsite	 /	 Out-‐of-‐core:	 	 ?	

Work by Laura Grigori,
Jim Demmel, Mark
Hoemmen, Julien Langou	

Matrix Powers Kernel (and TSQR) in GMRES

51"

0 200 400 600 800 1000

Iteration count

10�5

10�4

10�3

10�2

10�1

100

R
el

at
iv

e
no

rm
of

re
si

du
al

A
x
�

b
Original GMRES

0 200 400 600 800 1000

Iteration count

10�5

10�4

10�3

10�2

10�1

100

R
el

at
iv

e
no

rm
of

re
si

du
al

A
x
�

b
Original GMRES
CA-GMRES (Monomial basis)

0 200 400 600 800 1000

Iteration count

10�5

10�4

10�3

10�2

10�1

100

R
el

at
iv

e
no

rm
of

re
si

du
al

A
x
�

b
Original GMRES
CA-GMRES (Monomial basis)
CA-GMRES (Newton basis)

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

Communication-Avoiding Krylov Method (GMRES)

Performance on 8 core Clovertown

6/30/13" 53"

Optimality of Communication 
 

Lower bounds, (matching) upper
bounds (algorithms) and a question: 

 
Can we train compilers to do this? 

 
See: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/

EECS-2013-61.pdf!

Beyond Domain Decomposition
2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

n=8192, 2D

n=8192, 2.5D

n=131072, 2D

n=131072, 2.5D

E
xe

cu
tio

n
 t
im

e
 n

o
rm

a
liz

e
d
 b

y
2
D

Matrix multiplication on 16,384 nodes of BG/P

95% reduction in comm computation
idle

communication

c = 16 copies

EuroPar’11 (Solomonik, Demmel)
SC’11 paper (Solomonik, Bhatele, Demmel)

Surprises:
•  Even Matrix Multiply had room for

improvement
•  Idea: make copies of C matrix (as in prior

3D algorithm, but not as many)
•  Result is provably optimal in

communication
Lesson: Never waste fast memory

Can we generalize for compiler writers?

Towards Communication-Avoiding Compilers:
Deconstructing 2.5D Matrix Multiply

Tiling the iteration space
•  Compute a subcube
•  Will need data on faces

(projection of cube, subarrays)
•  For s loops in the nest è s

dimensional space
•  For x dimensional arrays,

project to x dim space

k

j

i
Matrix Multiplication code has a 3D iteration space
Each unit cube in the space is a constant computation (*/+)

for i
 for j
 for k

B[k,j] … A[i,k] … C[i,j] …

Deconstructing 2.5D Matrix Multiply
Solomonik & Demmel

Tiling in the k dimension
•  k loop has dependencies

because C (on the top) is a
Left-Hand-Side variable

 C += ..
•  Advantages to tiling in k:
-  More parallelism à
 Less synchronization
-  Less communication

x

z

z

y

x
y

What happens to these dependencies?
•  All dependencies are vertical k dim (updating C matrix)
•  Serial case: compute vertical block column in order
•  Parallel case:
-  2D algorithm (and compilers): never chop k dim
-  2.5 or 3D: Assume + is associative; chop k, which

implies replication of C matrix

k

j
i

Beyond Domain Decomposition

• Much of the work on compilers is based on
owner-computes
- For MM: Divide C into chunks, schedule movement of

A/B
- In this case domain decomposition becomes

replication
• Ways to compute C “pencil”

1.  Serially
2.  Parallel reduction
3.  Parallel asynchronous (atomic) updates
4.  Or any hybrid of these

• For what types / operators does this work?
- “+” is associative for 1,2 rest of RHS is “simple”
- and commutative for 3

57"

Using x for C[i,j] here

x += …

x += …

x += …

x += …

Standard vectorization trick

Lower Bound Idea on C = A*B
Iromy, Toledo, Tiskin

58"

x

z

z

y

x
y

“Unit cubes” in black box with
 side lengths x, y and z
= Volume of black box
= x*y*z
= (#A□s * #B□s * #C□s)1/2

= (xz * zy * yx)1/2

k

(i,k) is in “A shadow” if (i,j,k) in 3D set
(j,k) is in “B shadow” if (i,j,k) in 3D set
(i,j) is in “C shadow” if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
 # cubes in 3D set = Volume of 3D set
 ≤ (area(A shadow) * area(B shadow) *
 area(C shadow)) 1/2

“A shadow”

“C shadow”

j

i

Load
Load
Load

Load

Load
Load
Load

Store

Store
Store

Store

FLOP

FLOP

FLOP
FLOP
FLOP

FLOP

FLOP

Ti
m

e

Segment 1

Segment 2

Segment 3

Lower Bound: What is the minimum amount of
communication required?

 ..
.

59"

•  Proof from Irony/Toledo/Tiskin (2004)
•  Assume fast memory of size M
•  Outline (big-O reasoning):

–  Segment instruction stream,
each with M loads/stores

–  Somehow bound the maximum
number of flops that can be done
in each segment, call it F

–  So F · # segments ≥ T = total flops
= 2·n3, so # segments ≥ T / F

–  So # loads & stores = M ·
#segments ≥ M · T / F

•  How much work (F) can we do with
O(M) data?

Recall optimal sequential Matmul
• Naïve code
 for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

•  “Blocked” code
 for i1 = 1:b:n, for j1 = 1:b:n, for k1 = 1:b:n
 for i2 = 0:b-1, for j2 = 0:b-1, for k2 = 0:b-1
 i=i1+i2, j = j1+j2, k = k1+k2
 C(i,j)+=A(i,k)*B(k,j)

• Thm: Picking b = M1/2 attains lower bound:
 #words_moved = Ω(n3/M1/2)

• Where does 1/2 come from? Can we compute these for
arbitrary programs?

b x b matmul

Generalizing Communication Lower Bounds and
Optimal Algorithms

• For serial matmul, we know #words_moved = Ω (n3/M1/2),
attained by tile sizes M1/2 x M1/2

• Thm (Christ,Demmel,Knight,Scanlon,Yelick):
For any program that “smells like” nested loops, accessing
arrays with subscripts that are linear functions of the loop
indices, #words_moved = Ω (#iterations/Me), for some e
we can determine

• Thm (C/D/K/S/Y): Under some assumptions, we can
determine the optimal tiles sizes

•  Long term goal: All compilers should generate
communication optimal code from nested loops

New Theorem applied to Matmul

•  for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)
• Record array indices in matrix Δ

• Solve LP for x = [xi,xj,xk]T: max 1Tx s.t. Δ x ≤ 1

- Result: x = [1/2, 1/2, 1/2]T, 1Tx = 3/2 = sHBL

• Thm: #words_moved = Ω(n3/MSHBL-1)= Ω(n3/M1/2)
 Attained by block sizes Mxi,Mxj,Mxk = M1/2,M1/2,M1/2

i j k
1 0 1 A

Δ = 0 1 1 B
1 1 0 C

New Theorem applied to Direct N-Body

•  for i=1:n, for j=1:n, F(i) += force(P(i) , P(j))
• Record array indices in matrix Δ

• Solve LP for x = [xi,xj]T: max 1Tx s.t. Δ x ≤ 1

- Result: x = [1,1], 1Tx = 2 = sHBL

• Thm: #words_moved = Ω(n2/MSHBL-1)= Ω(n2/M1)
 Attained by block sizes Mxi,Mxj = M1,M1

i j
1 0 F

Δ = 1 0 P(i)
0 1 P(j)

New Theorem applied to Random Code

•  for i1=1:n, for i2=1:n, … , for i6=1:n
 A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))
 A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))
• Record array indices
 in matrix Δ

• Solve LP for x = [x1,…,x7]T: max 1Tx s.t. Δ x ≤ 1

- Result: x = [2/7,3/7,1/7,2/7,3/7,4/7], 1Tx = 15/7 = sHBL
• Thm: #words_moved = Ω(n6/MSHBL-1)= Ω(n6/M8/7)
 Attained by block sizes M2/7,M3/7,M1/7,M2/7,M3/7,M4/7

i1 i2 i3 i4 i5 i6

1 0 1 0 0 1 A1

1 1 0 1 0 0 A2

Δ = 0 1 1 0 1 0 A3

0 0 1 1 0 1 A3,A4

0 1 0 0 0 1 A5

1 0 0 1 1 0 A6

General Communication Bound

• Given S subset of Zk, group homomorphisms φ1, φ2, …,
bound |S| in terms of |φ1(S)|, |φ2(S)|, … , |φm(S)|

• Def: Hölder-Brascamp-Lieb LP (HBL-LP) for s1,…,sm:

 for all subgroups H < Zk, rank(H) ≤ Σj sj*rank(φj(H))

• Thm (Christ/Tao/Carbery/Bennett): Given s1,…,sm

 |S| ≤ Πj |φj(S)|sj

• Thm: Given a program with array refs given by φj, choose
sj to minimize sHBL = Σj sj subject to HBL-LP. Then

 #words_moved = Ω (#iterations/MsHBL-1)

Comments

• Thm: (bad news) HBL-LP reduces to Hilbert’s 10th problem
over Q (conjectured to be undecidable)

• Thm: (good news) Another LP with same solution is decidable
(but expensive, so far)

• Thm: (better news) Easy to write down LP explicitly in many
cases of interest (eg all φj = {subset of indices})

• Thm: (good news) Easy to approximate, i.e. get upper or
lower bounds on sHBL

•  If you miss a constraint, the lower bound may be too large
(i.e. sHBL too small) but still worth trying to attain

•  Tarski-decidable to get superset of constraints (may get sHBL too
large)

Comments

•  Attainability depends on loop dependencies
•  Best case: none, or associate operators (matmul, nbody)

•  Thm: When all φj = {subset of indices}, dual of HBL-LP gives
optimal tile sizes:

 HBL-LP: minimize 1T*s s.t. sT*Δ ≥ 1T

 Dual-HBL-LP: maximize 1T*x s.t. Δ*x ≤ 1
 Then for sequential algorithm, tile ij by Mxj
•  Ex: Matmul: s = [1/2 , 1/2 , 1/2]T = x
•  Generality:

- Extends to unimodular transforms of indices
- Does not require arrays (as long as the data structures are

injective containers)
- Does not require loops as long as they can model computation

In theory there is no difference
between theory and practice,

but in practice there is.!
-- Jan L. A. van de Snepscheut, Computer Scientist!
 or !
-- Yogi Berra, Baseball player and manager!

Generalizing Communication Optimal
Transformations to Arbitrary Loop Nests

Speedup of 1.5D N-Body over 1D

3.7x

1.7x

1.8x

2.0x

6K

24K

8K

32K

of
 c

or
es

1.5D N-Body: Replicate and Reduce The same idea (replicate
and reduce) can be used
on (direct) N-Body code:
 1D decomposition à
“1.5D”

Does this work in general?
•  Yes, for certain loops

and array expressions
•  Relies on basic result in

group theory
•  Compiler work TBD

IPDPS’13 paper (Driscoll, Georganas, Koanantakool,
Solomonik, Yelick)

N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

11.8x speedup

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

0

10000

20000

30000

40000

50000

60000

SUMMA Cannon TRSM Cholesky

G
flo

ps

Performance results on Cray XE6
(24K cores, 32k × 32k matrices)

2.5D + Overlap
2.5D (Avoiding)
2D + Overlap
2D (Original)

Communication Overlap Complements Avoidance

•  Even with communication-optimal algorithms (minimized bandwidth) there are still
benefits to overlap and other things that speed up networks

•  Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et
al, SC12

Stepping Back

• Communication avoidance as old at tiling
• Communication optimality as old as Hong/Kung
• What’s new?

- Raising the level of abstraction at which we optimize
- BLAS2 à BLAS3 à LU or SPMV/DOT à Krylov
- Changing numerics in non-trivial ways
- Rethinking methods to models

• Communication and synchronization avoidance
• Software engineering: breaking abstraction
• Compilers: inter-procedural optimizations

72"

Are there Exascale Algorithms?

Yes, but when you’re worrying about
• Scaling
• Synchronization,
• Dynamic system behavior
•  Irregular algorithms
• Resilience
don’t forget what’s important

Location, Location, Location

