Beyond UPC

Kathy Yelick

EECS Professor, UC Berkeley

Associate Laboratory Director for Computing Sciences
Lawrence Berkeley National Laboratory

-3
. ,\
rrrrrrr ""|

BERKELEY LAB

The National Energy Research Scientific
Computing Center Enables Science Eh" ;E‘

| 4500 users ~600 |

ouRNAL 0 s | app"caﬁons
CHEMICAL FEE-te

PHYSICS Frr s

| ; o Other

’-“V\ X . 2w

R oS CCSM/CAM

Journal of

chroma

Fluid Mechanics i
global_fest ‘
NIMROD

cpl

i(aorsa Iesmpna Osins v
nwchem ‘
W j T

25 appllcatlons =
2/3s of workload |

e =

BERKELEY LAB

Requirements For Future

« 2x gap in demand vs.
capability across centers

 10x gap by 2015 (NERSC)

« ~650 applications with these | mmromen et | s orounomsors
programming models el & re—
- 75% Fortran, 45% C/C++, e ;ﬁgm T
10% Python o 18 . }‘x
- 85% MPI, 25% with OpenMP I\ [/ SRS N Y
- 10% PGAS or global objects | B
These are self-reported, likely E B
low and may miss future users b e

http://science.energy.gov/ascr/news-and-

htqsh)uﬂwe&i'sc gov/science/requirements-reviews/final-
“‘teports/

Computing = Data Analysis and Simulation

Experimentation

¥

Data analysis is equally important in Science

Experimentation

\ 4

Growth in Sequencers, ‘
CCDs, sensors, etc.

Data Analysis Simulation

Programming Challenges and Solutions

Message Passing Programming

Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

6/28/13

Global Address Space Programming

Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries

>

— ,\
reeeoeee] !

BERKELEY LAB

Science Across the “Irregularity” Spectrum

Massive Nearest All-to-All Random
Independent Neighbor Simulations access, large

Jobs for Simulations data Analysis
Analysis and
Simulations

NS Y
Data analysis and simulation

-3
A
rrrrrrr ""|

PGAS Languages

* Global address space: thread may directly read/write
remote data

« Convenience and low overhead
* Partitioned: data is designated as local or global
* Locality and scalability

® i i
§ x: 1 i/.x:S x: 7
@ y: . : : 0 |
2 ~/ U d \
T)
S / 7
3 g: g: o: /
G

PO p1 pN

507 <AL
K "o9 = A
X |
Bl O R/OQ /AN e
7K
VLN
&Y.
bt /568 4

BERKELEY LAB

UPC: A PGAS language
based on C

See CS267 UPC Lectures for more details
Or attend SC13 tutorial on advanced UPC!

6/28/13

UPC Execution Model

* A number of threads working independently in a SPMD
fashion

- Number of threads specified at compile-time or run-time;
available as program variable THREADS

- MYTHREAD specifies thread index (0. . THREADS-1)
- upc barrier is a global synchronization: all wait
- There is a form of parallel loop for distributing work

« UPC has locks to protect shared variables: upc_lock t
upc _all lock alloc();
upc_lock ()

upc_unlock ()
upc_lock free () ;

2% c’o ~ A
) 6/28/13 10 el
b :
< 1868 4

BERKELEY LAB

Example: Monte Carlo Pi Calculation

 Estimate Pi by throwing darts at a unit square
 Calculate percentage that fall in the unit circle

—Area of square =2 = 1

—Area of circle quadrant = %4 * xt r? = /4
 Randomly throw darts at x,y positions
« Compute ratio:

—# points inside / # points total

- 1t = 4"ratio

« Assume serial function:
int hits () . .
— for x, y, return 1 if x2 + y2 < 1, 0 otherwise " ="

({ D) 6/28/13 11

Private vs. Shared Variables in UPC

« Normal C variables and objects are allocated in the private
memory space for each thread.

« Shared variables are allocated only once, with thread O
shared int ours; // use sparingly: performance
int mine;
int onedeach [THREADS]; // cyclic layout

Thread, Thread, Thread
" :
3 onedeach
b
T o ours: | Shared
© 0O
© ©
—_ O . : :
g (7)) mine: mine: eoo0o0 mine:
[°) Private
O

E ~ !
) 6/28/13 o

BERKELEY LAB

Pi in UPC: Shared Memory Style

 Parallel computing of pi, without the bug

shared int hits;

main (int argc, char **argv) ({
int i, my hits, my trials = 0; create a lock
upc lock t *hit lock = upc all lock alloc();
int trials = atoi(argv]|l]);
my trials = (trials + THREADS - 1)/THREADS;

srand (MYTHREAD*17) ;

for (i=0; i < my trials; i++) accumulate hits
my hits += hit(); locally

upc_lock (hit lock) ;

hits += my hits; accumulate

upc_unlock (hit_lock) ; across threads

upc_barrier;

if (MYTHREAD == 0)

printf ("PI: %$f", 4.0*hits/trials);

or <ALn } . :
) 6/28/13 13 ;:ﬁﬂ

BERKELEY LAB

Pi in UPC: Shared Array Version

« Alternative fix to the race condition
 Have each thread update a separate counter:
-But do it in a shared array

-Have one thread compute sum all_hits is
shared int all hits [THREADS]; shared by all
main (int argc, char **argv) ({ processors

... declarations and initialization code omitted
for (i=0; 1 < my trials; i++)
all hits[MYTHREAD] += hit(); update element

upc_barrier; with local affinity

if (MYTHREAD == 0) {

for (i=0; i < THREADS; i++) hits += all hits[i];
printf ("PI estimated to %f£.", 4.0*hits/trials);

}
oF N $
) 6/28/13 14 Il

BERKELEY LAB

Common Uses for UPC Pointer Types

int *pl;
 These pointers are fast (just like C pointers)
* Use to access local data in part of code performing local work

« Often cast a pointer-to-shared to one of these to get faster
access to shared data that is local

shared int *p2;
 Use to refer to remote data

« Larger and slower due to test-for-local + possible
communication

« Typical implementation has a thread ID + address + phase
int *shared p3;

 Not recommended

shared int *shared p4;

« Use to build shared linked structures, e.g., a linked list

) 62813 15 Rl

BERKELEY LAB

UPC Arrays and Collectives

Gather threads together for data-parallel
style operations

6/28/13 16

Pi in UPC: Data Parallel Style

* The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

« Use a reduction for better scalability

#include <bupc collectivev.h> Berkeley collectives

[/ no shared variables
main (int argc, char **argv) ({

for (i=0; i < my trials; i++)
my hits += hit();

my hits = // type, input, thread, op

bupc allv reduce(int, my hits, 0, UPC ADD) ;
[/ barrier implied by collective
if (MYTHREAD == 0)

printf ("PI: %f", 4.0*my hits/trials);

. } =]
) 6128113 17

BERKELEY LAB

Vector Addition with upc_forall

 The vector addition can be written as follows

* The code would be correct but slow if the affinity
expression were i+1 rather than i.

« Equivalent code could use “&sum[i]” for affinity
 Better style: if sum layout changes, still get good affinity

#define N 100*THREADS

shared @01 [N], v2[N], sum[N];

void main() { | ssum[i]

int i;
upc_ forall (1=0; i<N; i++;

sum[i]=v1[i]+v2[i];

1
J

*.of C»O ~ A
) 612813 18 |l
)
’V(s ;9 &

BERKELEY LAB

Distributed Arrays Directory Style

 Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS] ;
directory[i]=upc alloc(local size*sizeof (double));

1171|171 |directory

o R — E =
| s T T T~
:___i) _____________________________ — _[_/
physical and
* These are also more general: | conceptual
- Multidimensional, unevenly distributed 3D array

_ layout
~. * Ghost regions around blocks —
) 6/28/13 19 el

|

BERKELEY LAB

6/28/13

Performance of
UPC

20

Berkeley UPC Compiler

-

Used by bupc and
gcc-upc
Platform-
independent
Network- _Compiler-
independent independent
P Language-
GASNet Communication System independent
Used by Cray

UPC, CAF, Network Hardware
Chapel, Titanium,
and others

Avoiding Synchronization in Communication

two-sided message host
message id data payload — CEU
ded out network
one-sided put message interface
address data payload —
memory

« Two-sided message passing (e.g., MPI) requires a
matching receive to identify memory address to put data
- Couples data transfer with synchronization (but it ain’t free!)
» Global address space decouples synchronization
— Separately synchronize as needed
- Never have to say “receive’

 NB: MPI 1-sided can have same performance advantages

BERKELEY LAB

Bandwidths on Cray XE6 (Hopper)

18000

=¢=Berkeley UPC

16000
=@=Cray UPC

14000

=i=Cray MPI

12000

10000

8000

w
—
[01]
=
g
<
wid
=
3
S
c
©
[11]

6000

4000

2000

2048 8192
Msg. size

512

6/28/13

>

frreeerer

A
i

PGAS’s One-sided communication has
erformance advantages

Speedup of PGAS over MPI

140%
120%
100%
80%
60%

40%
B B =

o LU ScPk | Linpack 3D FFT 3D FFT | GTS Shift | 3D FFT | Impact-T MILC GTS Shift
Altix : 16 | X1:128 IB:256 | XT4:1K | XT4: 16K BG/P : 16K| XE6 : 16K | XE6 : 32K | XEG6 : 124K

Performance advantages for PGAS over MPI from

« Lower latency and overhead

« Better pipeline (overlapping communication with communication)

« Overlapping communication with computation

« Use of bisection bandwidth

;«* KERD, Y A
A5R
g A DA . |“'|
:
X 181

BERKELEY LAB

PyGAS: Combine two popular ideas

* Python
—-No. 6 Popular on htip://langpop.com and extensive
libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX

-10% of NERSC projects use Python

« PGAS
—-Convenient data and object sharing

* PyGAS : Objects can be shared via Proxies with operations
Intercepted and dispatched over the network:

num = 1+42%j print pxy.real # shared read
= share (num, from=0) pxy.imag = 3 # shared write

+ Leveraging duck typing: print pxy.conjugate () # invoke
* Proxies behave like original objects.
* Many libraries will automatically work.

Antisocial Parallelism: Avoiding,
Hiding and Managing Communication

Kathy Yelick

EECS Professor, UC Berkeley

Associate Laboratory Director for Computing Sciences
Lawrence Berkeley National Laboratory

-3
A
rrrrrrr |'"|

BERKELEY LAB

Challenge #1: Computing is energy-constrained

At ~$1M per MW, energy costs are substantial

* 1 petaflop in 2008 used 3 MW

1 exaflop in 2018 possible in 200 MW with “usual” scaling
* Goal: 1 exaflop in 20 MW = 20 pJ / operation

000 12 Megawatts per
machine o
+ (Kogge/Shalf)
10
usual .
100 caling/ "
7

8
/ == goal _J‘

2010 202

System Power (MW)

'92 '96 '00 ‘04 ‘08 ‘12 °

New Processors Means New Software

Interconnect

“Memory
Processors
4
130 MW 25 W
75 MW
Server Processors Manycore Low power memory
and interconnect

« Exascale will have chips with thousands of tiny processor cores,
and a few large ones

- Sea of lighweight cores with heavyweight “service” nodes
- Or lightweight cores as accelerators to CPUs

* Low power memory and storage technology are essential
- Probably with more software management to avoid waste

P07 AL,
o AV‘% ~ A
28 rrrrrrr |“'|
ok
N 1868

BERKELEY LAB

Challenge #2: Nodes with Heterogeneity and Locality

Cell phone
« Case for heterogeneity processor (0.1

Watt, 4 Gflop/
— Many small cores and SIMD for a oP/s)
energy efficiency; few CPUs for OS / speed

- Local store, explicitly managed memory ;00 wate. 40 ofion)

- More efficient (get only what you need) and simpler hardware
« Split memory between CPU and “Accelerators”
- Driven by market history and simplicity, but may not last
- Communication: The bus is a significant bottleneck.
» Co-Processor interface between CPU and Accelerator
— Default is on CPU, only run “parallel” code in limited regions
- Why are the minority CPUs in charge?
Avoid vicious cycle: Programming model should be designed
for future, not for current/past constraints

-3
A
rrrrrrr |"'|

BERKELEY LAB

Memory Speed vs. Capacity Conundrum

Cost (increases for higher capacity and cost/bit increases with bandwidth)

Bandwidth\Capacity| 16 GB 32GB | 64GB | 128GB | 256 GB | 512 GB
4 TB/s
2 TB/s
1TB/s

512 GB/s

256 GB/s

128 GB/s

Stack/PNM

Interposer

HMC organic

« Because of cost and power issues, we cannot have both high
memory bandwidth and large memory capacity

« The colored region is feasible in 2017

Compute intensive architecture focus on upper-left
Data Intensive architecture focus on lower right

Slide source: John Shalf 'ﬁhll‘“l

BERKELEY LAB

Compiler-free “UPC++” eases interoperability

global_array_t<int, 1> A(10); // shared [1] int A[10];

L-value reference (write/put)
A[1] =1; // A[1] -> global_ref t ref(A, 1); ref = 1;

R-value reference (read/get)
intn=A[1] +1; // A[1] -> global ref tref(A, 1); n = (int)ref + 1;

128 - Cray XK6 Performance Speedup Giga-Updates Per Second on MIC
Cluster
32 ==DEGAS C++
Q. =i=UPC
3
¢ 3
Q.
/2]

05 -1 -2 4 8 16 32 64 128 256 00

Number of GPUs 1t 2 4 8 16 32 60
Num. of Processes

) 62813 7
4\ 4
b /5CE e

One-sided communication works everywhere

PGAS programming model

*pl = *p2 + 1;
A[i] = B[1];

upc_memput (A,B,64) ;

B DALLAS A

. . .] Woso
It is implemented using one-sided b o
communication: put/get

Support for one-sided communication (DMA) appears in:

» Fast one-sided network communication (RDMA, Remote
DMA)

 Move data to/from accelerators
* Move data to/from I/O system (Flash, disks,..)

~~\Movement of data in/out of local-store (scratchpad) mem o

BERKELEY LAB

Vertical PGAS

* New type of wide pointer?
— Points to slow (offchip memory)
- The type system could get unwieldy quickly

e oo Frivateon-chip

I m:

Shared
off-chip
DRAM or
NVRAM

-3
A
rrrrrrr ’"'|

Challenge #3: Synchronization is Expensive

Patch Hyperbolic Integration Time

* Machines will have Frequent O
Faults and “Performance
Instability”

* Do all applications become
“irregular™?

—
-
(=]
[
|

Time (seconds)
T
|

* Locality-Load balance trade-off
—Most work on dynamic

140 1 | 1 | 1 | | | 1 | | | 1 | 1 |

scheduling is inside a B eessor
shared memory node
- La rg eSt va rlablllty Wl ” be Brian van Straalgn, DOE Exascale Research '
Conference, April 16-18, 2012. Impact of persistent
between nOdeS ECC memory faults.

<5 >
& R A
S) S T v« v | !
N 4

BERKELEY LAB

Event Driven LU in UPC

 DAG Scheduling in a distributed (partitioned) memory context
« Assignment of work is static; schedule is dynamic
» Ordering needs to be imposed on the schedule
— Critical path operation: Panel Factorization
» General issue: dynamic scheduling in partitioned memory

— Can deadlock in memory allocation

- “memory constrained” lookahead _
Uses a Berkeley extension to

UPC to remotely synchronize

= I
Lol .
. []
mC L]
some edges omitted

-3
| A
rrrrrrr |"'|

BERKELEY LAB

UPC HPL Performance

X1 Linpack Performance Opteron Cluster Altix Linpack
Li k
1400 Performance periormance '« MPI HPL numbers
m MPYHPL 160 - from HPCC
1200 a UPC
140 database

1000 200

120

-Large scaling:
«2.2 TFlops on 512p,

o | N *4.4 TFlops on 1024p
w0 murc | (Thunder)

20 -

800 100

150 -

GFlop/s

600 80

E—

GFlop/s
GFlop/s

100 +
400 -

L

50 -
200 -

_

0 - 0
60 X1/64 X1/128 Opt/64 Alt/32

« Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
- ScalLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s
 n = 32000 on a 4x4 process grid
- ScaLAPACK - 43.34 GFlop/s (block size = 64)
- UPC - 70.26 Gflop/s (block size = 200)

v Joint work with Parry HEESISEWY)

llllll

()

Two Distinct Parallel Programming Questions

* What is the parallel control model?

SPMD “default” plus data parallelism through
collectives and dynamic tasking within nodes
or between nodes through libraries

data parallel dynamic single program

(singe_ thread of control) threads multiple data (SPMD)
* What is the model for sharing/communication?

) J/' ‘ receive

PGAS load/store with partitioning for locality,
but need a “signaling store” for producer
SY consumer parallelism

37

-3
A
rrrrrrr |'"|

BERKELEY LAB

Hierarchical SPMD (demonstrated in Titanium)

* Thread teams may execute distinct tasks

partition(T) {
{ model fluid(); }
{ model muscles(); }
{ model electrical(); }

}
 Hierarchy for machine / tasks
—Nearby: access shared data

-Far away: copy data

spanl
(core loca
» Advantages: spand
_ 3
—-Provable pointer types E\E%Ecgl')

(global)

-Mixed data / task style
—Lexical scope prevents some deadlocks

RS, A
i AR
N Y o Y ¢« v]| [
H nH
¢ 5
%
AN
186

BERKELEY LAB

Hierarchical machines - Hierarchical programs

- Hierarchical memory

gf%%% . (What {0 expose va hide)

- Two approaches to
hierarchical control

« Option 1: Dynamic parallelism creation
- Recursively divide until... you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

« Option 2: Hierarchical SPMD with “Mix-ins”
- Hardware threads can be grouped into units hierarchically
— Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

Qption 1 spreads threads, option 2 collecte them together

-3
A
rrrrrrr |"'|

BERKELEY LAB

Challenge #4: Communication is expensive

Communication is expensive... Annual improvements

. Flops BW Latency
... time and energy Network 26% 15%

59% DRAM 23% = 5%

Cost components: 10000
« Bandwidth: # of words 1000 -
- Latency: # messages 100 -

PicoJoules
S

Strategies
« Overlap: hide latency

« Avoid: algorithms to reduce bandwidth use and
number of messages (latency)
Hard to change: Latency is physics; bandwidth is money!

A
rrrrrrr |'"|

,. cA,. »
40 BERKELEY LAB

O

Autotuning Gets Kernel Performance Near Optimal

* Roofline model captures bandwidth and computation limits
« Autotuning gets kernels near the roof

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

single-precision peak

1024 1024
double-precision peak
512 512
-P add-only
DGEMM
256 single-precision peak 256 G ‘ M
RTM/ .
128 o double-precision pea 128 \é\&v RiTM/wave eqn
R S
L, » 'o
64 IS®) DP add-only” CE VM 64 <0
§° RTM/wave-eqn: 4\01 27pt Stencil
&
32 43‘-‘"’ i 32 S
27pt Stencil 7 il
7pt Stencil - O ’T encl pt Stenci

° s = 18 @
4 1
8 /@ GTClpushi 8 spmv/’ !
7 1 7 7
Spnlqv. GTC/chargei -’/ .
J 1 "4 A
4 A 4 \’ qGTClchargeu
1 ’
1 4
‘@ 2

N

>

A
reeeeee] M)

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,...

BERKELEY LAB

Lessons Learned

* Good news
—-Although careful tuning is necessary
- Autotuning helps save programmer time

* But many kernels are bandwidth limited
-Stencils
-Sparse matrix-vector multiply
-Dense matrix-vector multiply

A problem for local memory and network

P AL
«*'of I‘%
£ rom SO
H:dl® 7\
(0 5) 6/29113 42
H o H
| AR)
© e A
SN 247
1868

Avoiding Communication in lterative Solvers

» Consider Sparse lIterative Methods for Ax=b
- Krylov Subspace Methods: GMRES, CG,...
» Solve time dominated by:

-Sparse matrix-vector multiple (SPMV)
* Which even on one processor is dominated by
“‘communication” time to read the matrix
-Global collectives (reductions)
* Global latency-limited

 Can we lower the communication costs?

—-Latency: reduce # messages by computing multiple
reductions at once

-Bandwidth to memory, i.e., compute Ax, A%x, ... Ax
with one read of A

Joint work with Jim
Demmel, Mark Hoemman,
Marghoob Mohiyuddin

-3
A
rrrrrrr |"'|

BERKELEY LAB

Communication Avoiding Kernels

The Matrix Powers Kernel : [Ax, A%x, ..., A"X]

 Replace k iterations of y = A-x with [Ax, A%x, ..., A*]

A3xX o o o o o 06 06 06 0 0 0 06 0 0 0 0 0 0 0o 0 0o 0 o o

AZ'XOOO o O O 6 o o o6 o o 0o o o o O O o o o o
Ax o o

X o

1 2 3 4 ... e 32

 |dea: pick up part of A and x that fit in fast memory, compute
each of k products

« Example: A tridiagonal matrix (a 1D “grid”), n=32, k=3

» (General idea works for any “well-partitioned” A

___ Communication Avoiding Kernels
(Sequential case)
The Matrix Powers Kernel : [Ax, A%x, ..., A*x]

« Replace k iterations of y = A-x with [Ax, A%X, ..., A*X]
« Sequential Algorithm
Step 1 Step 2

12 3 4... . 32
 Example: A tridiagonal, n=32, k=3
« Saves bandwidth (one read of A&x for k steps)
« Saves latency (number of independent read events)

Communication Avoiding Kernels:

(Parallel case)
The Matrix Powers Kernel : [Ax, A%x, ..., A"X]

 Replace k iterations of y = A-x with [Ax, A%X, ..., A*X]
« Parallel Algorithm

Proc 1 Proc 2

A3-x
A2-x
A-Xx

X
1 2 3 4.. e 32

« Example: A tridiagonal, n=32, k=3
 Each processor works on (overlapping) trapezoid
« Saves latency (# of messages); Not bandwidth

But adds redundant computation

Matrix Powers Kernel on a General Matrix

For implicit memory
management (caches)
uses a TSP algorithm
for layout

Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin

- Saves communication for “well partitioned” matrices
« Serial: O(1) moves of data moves vs. O(k)
« Parallel: O(log p) messages vs. O(k log p) e

BERKELEY LAB

A*x has higher performance than Ax

_ | Speedups on Intel Clovertown (8 core)| mm Akx

O k|= 50

2 6 X Bl SpMV |
Q.

Q 5 -
LL

94 k=7 -
8 2.5X “Sox k=19

C

T

=

| -

£

)

o

o — N w
ooII
-
w |l
>
N
o |
>Xes
_‘>~
~
X
nN
(9]
>
-
w ||

6 (—-3 (]) ©) ©) © © 4]
e 2 ¢ ¢ @2 2 £ & 5 3 2
g N - ~— ; =
s » . & © % © & E & ¢
s s 7 & S @ 0 = ° o
e a 13 > 8 § 8 9 &
TR 3 = o <2 09 2
© © E 7 (o) o &=
Al Re} 8
: © >
» 5 E = ;;R;;:;Ylei
« Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

Minimizing Communication of GMRES to solve Ax=b

« GMRES: find x in span{b,Ab,...,Akb} minimizing || Ax-b ||,

Standard GMRES Communication-avoiding GMRES
for i=1to k W =[v,Ay, Ay, ..., Akv]
w=A"v(i-1) ... SpMV [Q,R] = TSQR(W)
MGS(w, v(0),...,v(i-1)) ... “Tall Skinny QR”
update v(i), H build H from R
endfor solve LSQ problem with H

solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k
Parallel case: #messages decreases by a factor of k

*Oops — W from power method, precision lost!

TSQR: An Architecture-Dependent Algorithm

WO —> ROO > R01
Parallel: /- | W, | =™ Ry T R,,
w, : R30 > R, _—
- W; - R30
Wo — R — p
Sequential: /- | W, R ——
w, ” \; Ros
LW,
Work by Laura Grigori,
T W Jim Demmel, Mark
0 Roo — R Hoemmen, Julien Langou
Dual Core: _ | W —> o1 T
ua W= 1 Ro; __ >R
W, > Ry "
S __——>""03
- W, - R1;

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?
Can choose reduction tree dynamically

-3
A
rrrrrrr |'"|

BERKELEY LAB

Matrix Powers Kernel (and TSQR) in GMRES

10° p ' ' - :

A a4 A . — Original GMRES]

N A A4as CA-GMRES (Monomial basis) ||

4|> o SN 009 CA-GMRES (Newton basis) |

= A ‘AA T |

< H, a “a]

[: 4

_g E
‘»n
o
©

E E
o
c
o
=

E -
@
o

h 500 200 500 300 1000

lteration count

™ | JIm Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick
) 51

~S
1 A
Treeeee |'"|

BERKELEY LAB

Communication-Avoiding Krylov Method (GMRES)

t

w
n

Relative runtime, for best (k,t)

with floor(restart length / k)

f
[

-
=

w
o

N
n

.y
=)

-

w

Ly
=)

o
wn

o
o

Performance on 8 core Clovertown

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,

using 8 threads and restart length 60

Matrix powers
kernel

TSQR

Block Gram-
Schmidt

Small dense
operations
Sparse matrix-
vector product
Modified
Gram-Schmidt

Sparse matrix name

shipsec

~
A
f\l A

BERKELEY LAB

Optimality of Communication

Lower bounds, (matching) upper
bounds (algorithms) and a question:

Can we train compilers to do this?

See: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/
EECS-2013-61.pdf

6/30/13 53

Beyond Domain Decomposition
2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores

c = 16 copies
Matrix multiplication on 16,384 nodes of BG/P

Can we generalize

EuroPar’11 (Solomonik, Demmel)
SC’11 paper (Solomonik, Bhatele, Demmel)

Towards Communication-Avoiding Compilers:
Decon 1cting D Matrix Multipl

/ s Tiling the iteration space
« Compute a subcube
« Will need data on faces
(projection of cube, subarrays)
 For s loops inthe nest = s
dimensional space

j* For x dimensional arrays,
A project to x dim space

| <—
Matrix Multiplication code has a 3D iteration space
Each unit cube in the space is a constant computation (*/+)

fori
for j
for k
C[i,j] ... Ali,k] ... B[k,j] ...

>
A
rrrrrrr |"'|

BERKELEY LAB

Deconstructing 2.5D Matrix Multipl

oiomoni emme

/ z:‘l*, y sk Tiling in the k dimension
« k loop has dependencies

because C (on the top) is a
------------------- Q }z Left-Hand-Side variable

VAV v C+=..

A7 - Advantages to tiling in k:
X - More parallelism >

j Less synchronization

- - Less communication

What happens to these dependencies?
- All dependencies are vertical k dim (updating C matrix)
« Serial case: compute vertical block column in order
« Parallel case:
- 2D algorithm (and compilers): never chop k dim
- 2.5 or 3D: Assume + is associative; chop k, which
implies replication of C matrix !

BERKELEY LAB

Beyond Domain Decomposition

* Much of the work on compilers is based on
owner-computes

— For MM: Divide C into chunks, schedule movement of
A/B

- In this case domain decomposition becomes
replication
X += ... « Ways to compute C “pencil”
1. Serially
X += . 2. Parallel reduction Standard vectorization trick

3. Parallel asynchronous (atomic) updates
4. Or any hybrid of these

¥ * For what types / operators does this work?
- “+” is associative for 1,2 rest of RHS is “simple”
,,,,,,,,,, - and commutative for 3

o < /4 ey,

l* ¢ ""1, = A
h 57 ey i

D &

X += ...

X += ...

U

BERKELEY LAB

Lower Bound Idea on C = A*B

romy, Toledo, Tiskin

«X 5

“Unit cubes” in black box with
side lengths x, y and z

= Volume of black box

— x*y*z

= (#Acs * #Bos * #Cos)12

= (xz*zy * yx)"?

P

K

“C shadow”

Q " 9\\050 /’
O

“A shadow”

(i,k) is in “A shadow” if (i,j,k) in 3D set
(j,k) is in “B shadow” if (i,j,k) in 3D set
(i,j) is in “C shadow?” if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
cubes in 3D set = Volume of 3D set
< (area(A shadow) * area(B shadow) *
area(C shadow)) 12 e

BERKELEY LAB

Lower Bound: What is the minimum amount of
communication required?

* Proof from Irony/Toledo/Tiskin (2004)
« Assume fast memory of size M
* Outline (big-O reasoning):

— Segment instruction stream,
Segment 2 each with M loads/stores

— Somehow bound the maximum
—X— number of flops that can be done
in each segment, call it F

— So F - # segments = T = total flops
Segment 3 =2-n3, so #segments=T/F

— So #loads & stores=M -
v #segments =M -T/F

Segment 1

Time

« How much work (F) can we do with
O(M) data?

= A
L i
rrrrrrr

BERKELEY LAB

Recall optimal sequential Matmul

* Naive code
for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

* “Blocked” code
fori1 =1:b:n, forj1 =1:b:n, fork1 =1:b:n
fori2 = 0:b-1, forj2 =0:b-1, for k2 = 0:b-1
i=i1+i2, j=j1+j2, k = k1+k2 - b xb matmul
C(i.)+=A(i,k)*B(k,j) .

 Thm: Picking b = M1/2 attains lower bound:
#words_moved = Q(n3/M1/2)

* Where does 1/2 come from? Can we compute these for
arbitrary programs?

Generalizing Communication Lower Bounds and
Optimal Algorithms

» For serial matmul, we know #words_moved = Q (n3/M"?),
attained by tile sizes M2 x M2

 Thm (Christ,Demmel,Knight,Scanlon,Yelick):
For any program that “smells like” nested loops, accessing
arrays with subscripts that are linear functions of the loop
indices, #words moved = () (#iterations/Me), for some e
we can determine

 Thm (C/D/K/S/Y): Under some assumptions, we can
determine the optimal tiles sizes

* Long term goal: All compilers should generate
communication optimal code from nested loops

New Theorem applied to Matmul

e for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,K)*B(k,j)
* Record array indices in matrix A

i J K
(1 0 1)A
A= 0 1 1 B
_ 1 1 0)C

« Solve LP for x = [xi,xj,xk]": max1™x st. Ax<1
~Result: x = [1/2, 1/2, 1/2]7,1Tx = 3/2 = 545,

« Thm: #words_moved = Q(n3MStec-1)= Q(n3M172)
Attained by block sizes MXI MX,Mxk = M2 M1/2 M1/2

e CALIA

&’
ig

O
2R
3

New Theorem applied to Direct N-Body

e for i=1:n, for j=1:n, F(i) += force(P(i) , P(j))
* Record array indices in matrix A

| j
& 0 F
A = | 1 0| P()

0 1) P@)

« Solve LP for x = [xi,xj]": max1'x s.t. Ax<1
~Result: x =[1,1], 1Tx =2 = 545,

» Thm: #words_moved = Q(n2/MSHBL- 1= n2m 1)
Attained by block sizes MXi, M = M1 M'

CALI‘
0"
SR
3

{4 0

New Theorem applied to Random Code

e fori1=1:n, for i2=1:n, ..., fori6=1:n

A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))

A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))

» Record array indices 2 i3 45
in matrix A 25

1 1 0 1 0

A= 0 1 1 0 1

0 1 1 0

0 1 0 0 0

\1 0 0 1 1

« Solve LP for x =[x1,...,x7]": max1™x s.t. Ax<1

C- ey

A1
A2
A3

A3,A4
A5
A6

~Result: x = [2/7,3/7,1/7,2/7,3/7,4/7], 1"x = 15/7 = S5,

« Thm: #words_moved = Q(nG/MSHB'- 1= né/m8/7)

General Communication Bound

* Given S subset of ZX, group homomorphisms ., @, ...,
bound |S] in terms of [4(S)], [9x(S), -.. , [@(S)|

e Def: HO
for a
* Thm (C

der-Brascamp-Lieb LP (HBL-LP) for s,,...,s:
| subgroups H < Z*, rank(H) < Z; s;*rank(g,(H))

nrist/Tao/Carbery/Bennett): Given s,,...,s
S| < T} |g(S)[™

* Thm: Given a program with array refs given by ¢,, choose
s; to minimize s, = 2, s;subject to HBL-LP. Then

#words_moved = Q (#iterations/Ms+&L-1)

Comments

« Thm: (bad news) HBL-LP reduces to Hilbert’s 10" problem
over Q (conjectured to be undecidable)

* Thm: (good news) Another LP with same solution is decidable
(but expensive, so far)

* Thm: (better news) Easy to write down LP explicitly in many
cases of interest (eg all @, = {subset of indices})

 Thm: (good news) Easy to approximate, i.e. get upper or
lower bounds on s,

« If you miss a constraint, the lower bound may be too large
(i.e. syg, too small) but still worth trying to attain

« Tarski-decidable to get superset of constraints (may get s, too
large)

>
A
rrrrrrr |"'|

BERKELEY LAB

Comments

« Attainability depends on loop dependencies
« Best case: none, or associate operators (matmul, nbody)

* Thm: When all @, = {subset of indices}, dual of HBL-LP gives
optimal tile sizes:

HBL-LP: minimize 1™s s.t. sT*"A 21T
Dual-HBL-LP: maximize 1™*x s.t. A*x<1
Then for sequential algorithm, tile i; by MX]
« Ex: Matmul: s=[1/2,1/2,1/2]" =x
« Generality:
- Extends to unimodular transforms of indices

- Does not require arrays (as long as the data structures are
injective containers)

- Does not require loops as long as they can model computation

-3
A
rrrrrrr |"'|

BERKELEY LAB

In theory there is no difference
between theory and practice,
but in practice there is.

--Jan L. A. van de Snepscheut, Computer Scientist
or
-- Yogi Berra, Baseball player and manager

Generalizing Communication Optimal
Transformations to Arbitrary Loop Nests

1.5D N-Body: Replicate and Reduce The same idea (replicate
and reduce) can be used

. 000000 on (direct) N-Body code:
000 1D decomposition 2>
000 “1.5D”

Speedup of 1.5D N-Body over 1D

Does this work in general?

* Yes, for certain loops
and array expressions

* Relies on basic resultin
group theory

« Compiler work TBD

of cores

3.7x

IPDPS’13 paper (Driscoll, Georganas, Koanantakool, f\l)
Solomonik, Yelick) 1

N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

Execution Time vs. Replication Factor

’8\ 0.25 T T T T T T T T
@D mm Communication (Reduce)
o == Communication (Shift)

2 o2 - mm Computation -
()

=

= 0.15

o)

o

()

£ 0.1

|_

-

2 0.05

>

(&)

2

L 0

c=1 c=1 c=2 c=4 c=8 c¢c=16 ¢c=32 c=64
(tree) (no-tree)

Replication Factor
< >

11.8x speedup

Communication Overlap Complements Avoidance

60000 Performance results on Cray XE6
(24K cores, 32k x 32k matrices)
50000
®2.5D + Overlap
= 2.5D (Avoiding)
40000 2D + Overlap
»n ® 2D (Original)
Q
O 30000
[T
o
20000
10000
0

SUMMA Cannon TRSM Cholesky

» Even with communication-optimal algorithms (minimized bandwidth) there are still
benefits to overlap and other things that speed up networks

» Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et
al, SC12

BERKELEY LAB

Stepping Back

« Communication avoidance as old at tiling
« Communication optimality as old as Hong/Kung

* What's new?
-Raising the level of abstraction at which we optimize

-BLAS2 - BLAS3 - LU or SPMV/DOT - Krylov
—-Changing numerics in non-trivial ways
—Rethinking methods to models

« Communication and synchronization avoidance
» Software engineering: breaking abstraction
» Compilers: inter-procedural optimizations

Are there Exascale Algorithms?

Yes, but when you’re worrying about
 Scaling

« Synchronization,

* Dynamic system behavior

* Irregular algorithms

 Resilience

don’t forget what’s important

Location, Location, Location

