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1500+ publications per year 

Petaflop and Petabyte systems for science 

The National Energy Research Scientific 
Computing Center Enables Science 

25 applications =  
      2/3s of workload 

Breakdown 
of NERSC 
Workload  

4500 users ~600 
applications 



Requirements For Future  

3 

http://www.nersc.gov/science/requirements-reviews/final-
reports/ 

•  2x gap in demand vs. 
capability across centers  

•  10x gap by 2015  (NERSC)  
•  ~650 applications with these 

programming models 
-  75% Fortran, 45% C/C++, 

10% Python 
-  85% MPI, 25% with OpenMP 
-  10% PGAS or global objects 

These are self-reported, likely 
low and may miss future users 

http://science.energy.gov/ascr/news-and-
resources/ 



Computing = Data Analysis and Simulation 

Experimentation Theory 

Simulation 
Data Analysis 

Computing 
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Data analysis is equally important in Science 

Experimentation Theory 

Simulation Data Analysis 

Computing 

Growth in Sequencers, 
CCDs, sensors, etc.  

5"



Programming Challenges and Solutions 

Message Passing Programming  
Divide up domain in pieces 
Each compute one piece 
Exchange (send/receive) data 
 
PVM, MPI, and many libraries 
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Global Address Space Programming 
Each start computing 
Grab whatever you need whenever 
 
Global Address Space Languages 
and Libraries  
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Science Across the “Irregularity” Spectrum 

Massive 
Independent 

Jobs for 
Analysis and 
Simulations 

Nearest 
Neighbor 

Simulations 

All-to-All 
Simulations 

Random 
access, large 
data Analysis 
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Data analysis and simulation 
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PGAS Languages 

• Global address space: thread may directly read/write 
remote data  

• Convenience and low overhead 
• Partitioned: data is designated as local or global 

• Locality and scalability 
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 UPC: A PGAS language 
based on C 

 
See CS267 UPC Lectures for more details  

 
Or attend SC13 tutorial on advanced UPC!!
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UPC Execution Model 

•  A number of threads working independently in a SPMD 
fashion 
-  Number of threads specified at compile-time or run-time; 

available as program variable THREADS 
-  MYTHREAD specifies thread index (0..THREADS-1) 
-  upc_barrier is a global synchronization: all wait 
-  There is a form of parallel loop for distributing work 

•  UPC has locks to protect shared variables: upc_lock_t 
upc_lock_t *myLock = upc_all_lock_alloc(); 
upc_lock(myLock) 
    critical region 
upc_unlock(myLock) 
upc_lock_free(myLock); 
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Example: Monte Carlo Pi Calculation 

• Estimate Pi by throwing darts at a unit square 
• Calculate percentage that fall in the unit circle 

- Area of square = r2 = 1 
- Area of circle quadrant = ¼ * π r2 = π/4  

• Randomly throw darts at x,y positions 
• Compute ratio: 

- # points inside / # points total 
-  π = 4*ratio  

• Assume serial function: 
int hits ()  
-  for x, y, return 1 if x2 + y2 < 1, 0 otherwise r =1 
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Private vs. Shared Variables in UPC 

• Normal C variables and objects are allocated in the private 
memory space for each thread. 

• Shared variables are allocated only once, with thread 0 
     shared int ours;  // use sparingly: performance 
     int mine; 
     int one4each [THREADS]; // cyclic layout  

Shared 
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Pi in UPC: Shared Memory Style 

• Parallel computing of pi, without the bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_hits, my_trials = 0; 
  upc_lock_t *hit_lock = upc_all_lock_alloc(); 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); 
   } 

create a lock 

accumulate hits 
locally 

accumulate 
across threads 
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Pi in UPC: Shared Array Version 

• Alternative fix to the race condition  
• Have each thread update a separate counter: 

- But do it in a shared array 
- Have one thread compute sum 

shared int all_hits [THREADS]; 
main(int argc, char **argv) { 
  … declarations and initialization code omitted 
  for (i=0; i < my_trials; i++)  
    all_hits[MYTHREAD] += hit(); 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (i=0; i < THREADS; i++) hits += all_hits[i]; 
    printf("PI estimated to %f.", 4.0*hits/trials); 
  } 
} 

all_hits is 
shared by all 
processors 

update element 
with local affinity 
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Common Uses for UPC Pointer Types  

int *p1;  
•  These pointers are fast (just like C pointers) 
•  Use to access local data in part of code performing local work 
•  Often cast a pointer-to-shared to one of these to get faster 

access to shared data that is local 
shared int *p2;  
•  Use to refer to remote data 
•  Larger and slower due to test-for-local + possible 

communication  
•  Typical implementation has a thread ID + address + phase 
int *shared p3;  
•  Not recommended 
shared int  *shared p4;  
•  Use to build shared linked structures, e.g., a linked list 
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UPC Arrays and Collectives  
 

Gather threads together for data-parallel 
style operations!
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Pi in UPC: Data Parallel Style 

• The previous version of Pi works, but is not scalable: 
- On a large # of threads, the locked region will be a bottleneck 

• Use a reduction for better scalability 
   
  #include <bupc_collectivev.h> 
  // shared int hits; 
  main(int argc, char **argv) { 
      ... 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      my_hits =         // type, input, thread, op 
         bupc_allv_reduce(int, my_hits, 0, UPC_ADD);  
      // upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*my_hits/trials); 
   } 

 Berkeley collectives 
no shared variables 

barrier implied by collective 
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Vector Addition with upc_forall 

#define N 100*THREADS 
 
shared 
 
void main() { 

 int i; 
 upc_forall(i=0; i<N; i++; i) 

                 sum[i]=v1[i]+v2[i]; 
} 

• The vector addition can be written as follows 
• The code would be correct but slow if the affinity 

expression were i+1 rather than i. 
• Equivalent code could use “&sum[i]” for affinity 
• Better style: if sum layout changes, still get good affinity 

&sum[i] 

int v1[N], v2[N], sum[N]; [100] 
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Distributed Arrays Directory Style 

• Many UPC programs avoid the UPC style arrays in 
factor of directories of objects 

typedef shared [] double *sdblptr; 
shared sdblptr directory[THREADS]; 
directory[i]=upc_alloc(local_size*sizeof(double)); 

directory 

• These are also more general: 
• Multidimensional, unevenly distributed 
• Ghost regions around blocks 

physical and 
conceptual 
3D array 
layout 
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Performance of 
UPC!



Berkeley UPC Compiler !

Compiler-generated C code 

UPC Runtime system 

GASNet Communication System 

Network Hardware 

Platform- 
independent 

Network- 
independent 

Language- 
independent 

Compiler- 
independent 

UPC Code UPC Compiler 
Used by bupc and 

gcc-upc 

Used by Cray 
UPC, CAF, 

Chapel, Titanium, 
and others  



Avoiding Synchronization in Communication 

• Two-sided message passing (e.g., MPI) requires a  
matching receive to identify memory address to put data 
- Couples data transfer with synchronization (but it ain’t free!) 

• Global address space decouples synchronization 
- Separately synchronize as needed 
- Never have to say “receive” 

• NB: MPI 1-sided can have same performance advantages 

address 

message id 

data payload 

data payload 
one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 

22"



0 

2000 

4000 

6000 

8000 

10000 

12000 

14000 

16000 

18000 

8 32 128 512 2048 8192 32768 131072 524288 2097152 

B
an

dw
id

th
 (M

B
/s

) 

Msg. size 

Berkeley UPC 

Cray UPC 

Cray MPI 

Bandwidths on Cray XE6 (Hopper) 

6/28/13" 23"

0 

2 

4 

6 

8 

10 

12 

UPC/MPI 



PGAS’s One-sided communication has 
performance advantages 

0% 
20% 
40% 
60% 
80% 

100% 
120% 
140% 

LU ScPk Linpack 3D FFT 3D FFT GTS Shift 3D FFT Impact-T MILC GTS Shift 

Altix : 16 X1 : 128 IB : 256 XT4 : 1K XT4 : 16K BG/P : 16K XE6 : 16K XE6 : 32K XE6 : 124K 

Speedup of PGAS over MPI 

Performance advantages for PGAS over MPI from 
•  Lower latency and overhead 
•  Better pipeline (overlapping communication with communication) 
•  Overlapping communication with computation 
•  Use of bisection bandwidth 
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PyGAS: Combine two popular ideas 

• Python 
- No. 6 Popular on http://langpop.com and extensive 

libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX 
- 10% of NERSC projects use Python 

• PGAS 
- Convenient data and object sharing 

• PyGAS : Objects can be shared via Proxies with operations 
intercepted and dispatched over the network: 

•  Leveraging duck typing: 
•  Proxies behave like original objects. 
•  Many libraries will automatically work. 

num = 1+2*j 
    = share(num, from=0) 

print pxy.real # shared read 
pxy.imag = 3   # shared write 
print pxy.conjugate() # invoke 



Antisocial Parallelism: Avoiding, 
Hiding and Managing Communication!

 

 
Kathy Yelick 

 
EECS Professor, UC Berkeley 

 
Associate Laboratory Director for Computing Sciences 

Lawrence Berkeley National Laboratory 
 
 



Challenge #1: Computing is energy-constrained 

At ~$1M per MW, energy costs are substantial 
•  1 petaflop in 2008 used 3 MW 
•  1 exaflop in 2018 possible in 200 MW with “usual” scaling 
• Goal: 1 exaflop in 20 MW = 20 pJ / operation 

goal 

usual 
scaling 

2005                                      2010                                     
2015                                      2020 
27"

The “New Normal” for Computer Architecture
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New Processors Means New Software 

•  Exascale will have chips with thousands of tiny processor cores, 
and a few large ones 
- Sea of lighweight cores with heavyweight “service” nodes 
- Or lightweight cores as accelerators to CPUs 

•  Low power memory and storage technology are essential 
- Probably with more software management to avoid waste 
28"

Interconnect 
Memory 
Processors 

Server Processors                   Manycore 

130 MW 
75 MW 

25 MW 

Low power memory 
and interconnect 



Challenge #2: Nodes with Heterogeneity and Locality 

•  Local store, explicitly managed memory 
- More efficient (get only what you need) and simpler hardware 

• Split memory between CPU and “Accelerators” 
- Driven by market history and simplicity, but may not last 
- Communication: The bus is a significant bottleneck. 

• Co-Processor interface between CPU and Accelerator 
- Default is on CPU, only run “parallel” code in limited regions 
- Why are the minority CPUs in charge?   

Avoid vicious cycle: Programming model should be designed 
for future, not for current/past constraints 

Cell phone 
processor (0.1 
Watt, 4 Gflop/s) 

Server processor  
(100 Watts, 50 Gflop/s) 

•  Case for heterogeneity 
–  Many small cores and SIMD for               

energy efficiency; few CPUs for OS / speed 
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Memory Speed vs. Capacity Conundrum 

•  Because of cost and power issues, we cannot have both high 
memory bandwidth and large memory capacity 

•  The colored region is feasible in 2017 
 
Compute intensive architecture focus on upper-left 
Data Intensive architecture focus on lower right 
 

Bandwidth\Capacity	   16	  GB	   32	  GB	   64	  GB	   128	  GB	   256	  GB	   512	  GB	   1	  TB	  
4	  TB/s	   	  	   	  	   	  	   	  	   	  	   	  	  
2	  TB/s	   Stack/PNM	   	  	   	  	   	  	   	  	   	  	   	  	  
1	  TB/s	   	  	   Interposer	  	   	  	   	  	   	  	   	  	  

512	  GB/s	   	  	   	  	   	  	   HMC	  organic	   	  	   	  	  
256	  GB/s	   	  	   	  	   	  	   	  	   	  	   	  	    NVRAM	  	  
128	  GB/s	   	  	   	  	   	  	   	  	   	  	   DIMM	   	  	  

optical 

block 

Cost (increases for higher capacity and cost/bit increases with bandwidth) 
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Compiler-free “UPC++” eases interoperability  

global_array_t<int, 1> A(10); // shared [1] int A[10]; 

L-value reference (write/put) 
A[1] = 1; // A[1] -> global_ref_t ref(A, 1); ref = 1;  

R-value reference (read/get) 
int n = A[1] + 1; // A[1] -> global_ref_t ref(A, 1);  n = (int)ref + 1; 
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One-sided communication works everywhere 

Support for one-sided communication (DMA) appears in: 
•  Fast one-sided network communication (RDMA, Remote 

DMA) 
•  Move data to/from accelerators 
•  Move data to/from I/O system (Flash, disks,..) 
•  Movement of data in/out of local-store (scratchpad) memory 

PGAS programming model 
 
   *p1 = *p2 + 1; 
   A[i] = B[i]; 
 
   upc_memput(A,B,64); 
 
It is implemented using one-sided 
communication: put/get 



Vertical PGAS 

x: 1 
y:  

x: 5 
y:  

x: 7 
y: 0 

Shared 
partitioned 
on-chip 

l:  m:  Private on-chip 

Shared 
off-chip 
DRAM or 
NVRAM 

• New type of wide pointer? 
-  Points to slow (offchip memory)  
- The type system could get unwieldy quickly 



Challenge #3: Synchronization is Expensive 

• Machines will have Frequent 
Faults and “Performance 
Instability” 

• Do all applications become 
“irregular”? 

•  Locality-Load balance trade-off 
- Most work on dynamic 

scheduling is inside a 
shared memory node 
- Largest variability will be 

between nodes 
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Brian van Straalen, DOE Exascale Research 
Conference, April 16-18, 2012. Impact of persistent 
ECC memory faults. 



Event Driven LU in UPC 

• DAG Scheduling in a distributed (partitioned) memory context 
• Assignment of work is static; schedule is dynamic 
• Ordering needs to be imposed on the schedule 

- Critical path operation: Panel Factorization 
• General issue: dynamic scheduling in partitioned memory 

- Can deadlock in memory allocation 
- “memory constrained” lookahead 
 

some edges omitted 

Uses a Berkeley extension to 
UPC to remotely synchronize 
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UPC HPL Performance 

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid 
- ScaLAPACK (block size 64) 25.25 GFlop/s (tried  several block sizes) 
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s 

•  n = 32000 on a 4x4 process grid 
- ScaLAPACK - 43.34 GFlop/s (block size = 64)  
- UPC - 70.26 Gflop/s (block size = 200) 

X1 Linpack Performance
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• MPI HPL numbers 
from HPCC 
database 

• Large scaling:  
• 2.2 TFlops on 512p,  
• 4.4 TFlops on 1024p 
(Thunder) 

Joint work with Parry Husbands!



Two Distinct Parallel Programming Questions 

• What is the parallel control model? 

• What is the model for sharing/communication? 
  

 
 
 
      synchronization may be coupled (implicit) or separate (explicit) 

data parallel 
(singe thread of control) 

dynamic 
threads 

single program 
multiple data (SPMD) 

shared memory 
load 
store 

send 

receive 

message passing 

37"

PGAS load/store with partitioning for locality, 
but need a “signaling store” for producer 
consumer parallelism 

SPMD “default” plus data parallelism through 
collectives and dynamic tasking within nodes 
or between nodes through libraries 



Hierarchical SPMD (demonstrated in Titanium) 

• Thread teams may execute distinct tasks 
partition(T) { 
  { model_fluid(); } 
  { model_muscles(); } 
  { model_electrical(); } 
} 

• Hierarchy for machine / tasks 
- Nearby: access shared data 
- Far away: copy data 

• Advantages:  
- Provable pointer types  
- Mixed data / task style  
- Lexical scope prevents some deadlocks 
38"
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Single Program Multiple Data 
(SPMD) is too restrictive 

Hierarchical machines à Hierarchical programs 

• Option 1: Dynamic parallelism creation 
- Recursively divide until… you run out of work (or hardware) 
- Runtime needs to match parallelism to hardware hierarchy 

• Option 2: Hierarchical SPMD with “Mix-ins” 
- Hardware threads can be grouped into units hierarchically 
- Add dynamic parallelism with voluntary tasking on a group 
- Add data parallelism with collectives on a group 

Option 1 spreads threads, option 2 collecte them together 

0	   3	  1	   2	  

4	  

5	  

6	  

7	  

0	  

1	  
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3	  

•  Hierarchical memory 
model may be necessary 
(what to expose vs hide) 

•  Two approaches to 
supporting the 
hierarchical control 



   

Challenge #4: Communication is expensive 
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Communication is expensive… 
  … time and energy 
 
Cost components: 

•  Bandwidth: # of words 
•  Latency:     # messages 

 
Strategies 

•  Overlap: hide latency 
•  Avoid: algorithms to reduce bandwidth use and 

number of messages (latency) 

Annual improvements 
Flops BW Latency 

 
59% 

Network 26% 15% 
DRAM 23% 5% 

Hard to change: Latency is physics; bandwidth is money! 
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On-Chip 

Off-Chip 
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Autotuning Gets Kernel Performance Near Optimal 

• Roofline model captures bandwidth and computation limits 
• Autotuning gets kernels near the roof 

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…  



Lessons Learned 

• Good news 
- Although careful tuning is necessary 
- Autotuning helps save programmer time 

• But many kernels are bandwidth limited 
- Stencils 
- Sparse matrix-vector multiply 
- Dense matrix-vector multiply 

• A problem for local memory and network 
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Avoiding Communication in Iterative Solvers 

• Consider Sparse Iterative Methods for Ax=b 
-  Krylov Subspace Methods: GMRES, CG,… 

• Solve time dominated by: 
- Sparse matrix-vector multiple (SPMV) 

•  Which even on one processor is dominated by 
“communication” time to read the matrix  

- Global collectives (reductions) 
•  Global latency-limited  

• Can we lower the communication costs? 
- Latency: reduce # messages by computing multiple 

reductions at once 
- Bandwidth to memory, i.e., compute Ax, A2x, … Akx 

with one read of A Joint work with Jim 
Demmel, Mark Hoemman, 
Marghoob Mohiyuddin 



1   2   3   4  …  … 32 
x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels 
 

The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  
 

 
•  Idea: pick up part of A and x that fit in fast memory, compute 

each of k products 
•  Example: A tridiagonal matrix (a 1D “grid”), n=32, k=3 
•  General idea works for any “well-partitioned” A 



1   2   3   4 …  … 32 

x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels 
(Sequential case) 

The Matrix Powers Kernel : [Ax, A2x, …, Akx]  

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Sequential Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Saves bandwidth (one read of A&x for k steps) 
•  Saves latency (number of independent read events) 

Step 1 Step  2 Step  3 Step  4 



1   2   3   4 …  … 32 
x 

A·x 

A2·x 

A3·x 

Communication Avoiding Kernels: 
(Parallel case) 

The Matrix Powers Kernel : [Ax, A2x, …, Akx]  
•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Each processor works on (overlapping) trapezoid 
•  Saves latency (# of messages); Not bandwidth 
         But adds redundant computation 

Proc 1 Proc  2 Proc  3 Proc  4 



Matrix Powers Kernel on a General Matrix 

• Saves communication for “well partitioned” matrices 
•  Serial: O(1) moves of data  moves vs. O(k) 
•  Parallel: O(log p) messages vs.  O(k log p)  47"

Joint work with Jim Demmel, Mark 
Hoemman, Marghoob Mohiyuddin 

For implicit memory 
management (caches) 
uses a TSP algorithm 
for layout 
 



Akx has higher performance than Ax    

Speedups on Intel Clovertown (8 core) 

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick  



Minimizing Communication of GMRES to solve Ax=b 

•  GMRES: find x in span{b,Ab,…,Akb} minimizing || Ax-b ||2 

Standard	  GMRES	  
	  	  for	  i=1	  to	  k	  
	  	  	  	  	  w	  =	  A	  ·∙	  v(i-‐1)	  	  	  …	  SpMV	  
	  	  	  	  	  MGS(w,	  v(0),…,v(i-‐1))	  
	  	  	  	  	  update	  v(i),	  H	  
	  	  endfor	  
	  	  solve	  LSQ	  problem	  with	  H	  
	  

CommunicaRon-‐avoiding	  GMRES	  
	  	  	  W	  =	  [	  v,	  Av,	  A2v,	  …	  ,	  Akv	  ]	  
	  	  	  [Q,R]	  =	  TSQR(W)	  	  	  
	  	  	  	  	  	  	  	  	  	  …	  	  “Tall	  Skinny	  QR”	  
	  	  	  build	  H	  from	  R	  	  
	  	  	  solve	  LSQ	  problem	  with	  H	  
	  
	  
	  
	  Sequential case: #words moved decreases by a factor of k 

Parallel case: #messages decreases by a factor of k 

• Oops	  –	  W	  from	  power	  method,	  precision	  lost!	  



TSQR: An Architecture-Dependent Algorithm 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  
Parallel:	  

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R01	   R02	  

R00	  

R03	  

SequenRal:	  

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R01	  

R01	  

R11	  
R02	  

R11	  

R03	  

Dual	  Core:	  

Can	  choose	  reducRon	  tree	  dynamically	  
MulRcore	  /	  MulRsocket	  /	  MulRrack	  /	  MulRsite	  /	  Out-‐of-‐core:	  	  ?	  

Work by Laura Grigori, 
Jim Demmel, Mark 
Hoemmen, Julien Langou	




Matrix Powers Kernel (and TSQR) in GMRES 

51"
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Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick  



Communication-Avoiding Krylov Method (GMRES) 

Performance on 8 core Clovertown 
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Optimality of Communication 
 

Lower bounds, (matching) upper 
bounds (algorithms) and a question: 

 
Can we train compilers to do this? 

 
See: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/

EECS-2013-61.pdf!



Beyond Domain Decomposition 
2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores 
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Matrix multiplication on 16,384 nodes of BG/P

95% reduction in comm computation
idle

communication

c = 16 copies 

EuroPar’11 (Solomonik, Demmel) 
SC’11 paper (Solomonik, Bhatele, Demmel) 

Surprises:  
•  Even Matrix Multiply had room for 

improvement 
•  Idea: make copies of C matrix  (as in prior 

3D algorithm, but not as many) 
•  Result is provably optimal in 

communication 
Lesson: Never waste fast memory 
 
Can we generalize for compiler writers? 



Towards Communication-Avoiding Compilers: 
Deconstructing 2.5D Matrix Multiply 

Tiling the iteration space 
•  Compute a subcube 
•  Will need data on faces 

(projection of cube, subarrays) 
•  For s loops in the nest è s 

dimensional space 
•  For x dimensional arrays, 

project to x dim space 

k 

j 

i 
Matrix Multiplication code has a 3D iteration space 
Each unit cube in the space is a constant computation (*/+) 
 

for i 
   for j 
      for k 

B[k,j]  … A[i,k] …  C[i,j] … 



Deconstructing 2.5D Matrix Multiply 
Solomonik & Demmel 

Tiling in the k dimension 
•  k loop has dependencies 

because C (on the top) is a 
Left-Hand-Side variable 

             C += .. 
•  Advantages to tiling in k: 
-  More parallelism à 
             Less synchronization 
-  Less communication 

x 

z 

z 

y 

x 
y 

What happens to these dependencies? 
•  All dependencies are vertical k dim (updating C matrix) 
•  Serial case: compute vertical block column in order 
•  Parallel case:  
-  2D algorithm (and compilers): never chop k dim 
-  2.5 or 3D: Assume + is associative; chop k, which 

implies replication of C matrix 

k 

j 
i 



Beyond Domain Decomposition 

• Much of the work on compilers is based on 
owner-computes 
- For MM: Divide C into chunks, schedule movement of 

A/B 
- In this case domain decomposition becomes 

replication 
• Ways to compute C “pencil” 

1.  Serially 
2.  Parallel reduction 
3.  Parallel asynchronous (atomic) updates 
4.  Or any hybrid of these 

• For what types / operators does this work? 
- “+” is associative for 1,2 rest of RHS is “simple” 
- and commutative for 3 

57"

Using x for C[i,j] here 

x += … 

x += … 

x += … 

x += … 

Standard vectorization trick 



Lower Bound Idea on C = A*B 
Iromy, Toledo, Tiskin 

58"
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z 

z 

y 

x 
y 

“Unit cubes” in black box with 
   side lengths x, y and z 
= Volume of black box 
= x*y*z 
= (#A□s * #B□s * #C□s )1/2 

= ( xz * zy * yx)1/2 

k 

(i,k) is in “A shadow” if (i,j,k) in 3D set  
(j,k) is in “B shadow” if (i,j,k) in 3D set  
(i,j)  is in “C shadow” if (i,j,k) in 3D set 
 
Thm (Loomis & Whitney, 1949) 
     # cubes in 3D set = Volume of 3D set 
     ≤ (area(A shadow) * area(B shadow) * 
         area(C shadow)) 1/2 

“A shadow” 

“C shadow” 

j 

i 



Load 
Load 
Load 

Load 

Load 
Load 
Load 

Store 

Store 
Store 

Store 

FLOP 

FLOP 

FLOP 
FLOP 
FLOP 

FLOP 

FLOP 

Ti
m

e 

Segment 1 

Segment 2 

Segment 3 

Lower Bound: What is the minimum amount of 
communication required? 

 ..
.  
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•  Proof from Irony/Toledo/Tiskin (2004) 
•  Assume fast memory of size M 
•  Outline (big-O reasoning): 

–  Segment instruction stream,  
each with M loads/stores      

–  Somehow bound the maximum 
number of flops that can be done 
in each segment, call it F 

–  So F · # segments ≥ T = total flops 
= 2·n3,  so  # segments ≥ T / F 

–  So # loads & stores = M · 
#segments  ≥ M · T / F 

•  How much work (F) can we do with 
O(M) data?  



Recall optimal sequential Matmul 
• Naïve code 
     for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j) 
 
•  “Blocked” code 
     for i1 = 1:b:n,  for j1 = 1:b:n,   for k1 = 1:b:n 
       for i2 = 0:b-1,  for j2 = 0:b-1,   for k2 = 0:b-1 
          i=i1+i2,  j = j1+j2,  k = k1+k2 
          C(i,j)+=A(i,k)*B(k,j) 
 
• Thm: Picking b = M1/2 attains lower bound: 
      #words_moved = Ω(n3/M1/2) 

• Where does 1/2 come from?  Can we compute these for 
arbitrary programs? 

b x b matmul 



Generalizing Communication Lower Bounds and 
Optimal Algorithms 

• For serial matmul, we know #words_moved =  Ω (n3/M1/2), 
attained by tile sizes M1/2 x M1/2 

• Thm (Christ,Demmel,Knight,Scanlon,Yelick):                  
For any program that “smells like” nested loops, accessing 
arrays with subscripts that are linear functions of the loop 
indices, #words_moved =   Ω (#iterations/Me), for some e 
we can determine 

• Thm (C/D/K/S/Y): Under some assumptions, we can 
determine the optimal tiles sizes 

•  Long term goal: All compilers should generate 
communication optimal code from nested loops 



New Theorem applied to Matmul 

•  for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j) 
• Record array indices in matrix Δ 

 
 
 
• Solve LP for x = [xi,xj,xk]T:  max 1Tx   s.t.   Δ x ≤ 1 

- Result: x = [1/2, 1/2, 1/2]T, 1Tx = 3/2 = sHBL 

• Thm: #words_moved = Ω(n3/MSHBL-1)= Ω(n3/M1/2) 
    Attained by block sizes Mxi,Mxj,Mxk = M1/2,M1/2,M1/2 

i j k 
1 0 1 A 

Δ   = 0 1 1 B 
1 1 0 C 



New Theorem applied to Direct N-Body 

•  for i=1:n, for j=1:n, F(i) += force( P(i) , P(j) ) 
• Record array indices in matrix Δ 

 

 
• Solve LP for x = [xi,xj]T:  max 1Tx  s.t. Δ x ≤ 1 

- Result: x = [1,1], 1Tx = 2 = sHBL 

• Thm: #words_moved = Ω(n2/MSHBL-1)= Ω(n2/M1) 
    Attained by block sizes Mxi,Mxj = M1,M1 

i j 
1 0 F 

Δ   = 1 0 P(i) 
0 1 P(j) 



New Theorem applied to Random Code 

•  for i1=1:n, for i2=1:n, … , for i6=1:n 
      A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6)) 
      A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6)) 
• Record array indices  
     in matrix Δ 
 

 
• Solve LP for x = [x1,…,x7]T:  max 1Tx  s.t. Δ x ≤ 1 

- Result: x = [2/7,3/7,1/7,2/7,3/7,4/7], 1Tx = 15/7 = sHBL 
• Thm: #words_moved = Ω(n6/MSHBL-1)= Ω(n6/M8/7) 
    Attained by block sizes M2/7,M3/7,M1/7,M2/7,M3/7,M4/7 
 
 
 
 

i1 i2 i3 i4 i5 i6 

1 0 1 0 0 1 A1 

1 1 0 1 0 0 A2 

Δ = 0 1 1 0 1 0 A3 

0 0 1 1 0 1 A3,A4 

0 1 0 0 0 1 A5 

1 0 0 1 1 0 A6 



General Communication Bound 

• Given S subset of Zk, group homomorphisms φ1, φ2, …,             
bound |S| in terms of |φ1(S)|,  |φ2(S)|, … , |φm(S)| 

• Def: Hölder-Brascamp-Lieb LP (HBL-LP) for s1,…,sm: 

       for all subgroups H < Zk,     rank(H) ≤ Σj sj*rank(φj(H)) 

• Thm (Christ/Tao/Carbery/Bennett): Given s1,…,sm 

                                |S| ≤ Πj |φj(S)|sj 

• Thm: Given a program with array refs given by φj, choose 
sj to minimize sHBL = Σj sj subject to HBL-LP. Then 

                #words_moved = Ω (#iterations/MsHBL-1) 

 



Comments 

• Thm: (bad news) HBL-LP reduces to Hilbert’s 10th problem 
over Q (conjectured to be undecidable) 

• Thm: (good news) Another LP with same solution is decidable 
(but expensive, so far) 

• Thm: (better news) Easy to write down LP explicitly in many 
cases of interest (eg all φj = {subset of indices}) 

• Thm: (good news) Easy to approximate, i.e. get upper or 
lower bounds on sHBL  

•   If you miss a constraint, the lower bound may be too large             
(i.e. sHBL too small) but still worth trying to attain  

•  Tarski-decidable to get superset of constraints (may get  sHBL too 
large) 



Comments 

•  Attainability depends on loop dependencies 
•  Best case: none, or associate operators (matmul, nbody) 

•  Thm: When all φj = {subset of indices}, dual of HBL-LP gives 
optimal tile sizes: 

        HBL-LP:           minimize  1T*s   s.t.  sT*Δ ≥ 1T 

            Dual-HBL-LP:  maximize 1T*x  s.t.    Δ*x ≤ 1 
     Then for sequential algorithm, tile ij by Mxj 
•  Ex: Matmul: s = [ 1/2 , 1/2 , 1/2 ]T = x 
•  Generality: 

- Extends to unimodular transforms of indices 
- Does not require arrays (as long as the data structures are 

injective containers) 
- Does not require loops as long as they can model computation 



In theory there is no difference 
between theory and practice, 

but in practice there is.!
-- Jan L. A. van de Snepscheut, Computer Scientist!
             or !
-- Yogi Berra, Baseball player and manager!



  

Generalizing Communication Optimal 
Transformations to Arbitrary Loop Nests 

Speedup of 1.5D N-Body over 1D 

3.7x 

1.7x 

1.8x 

2.0x 
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1.5D N-Body: Replicate and Reduce The same idea (replicate 
and reduce) can be used 
on (direct) N-Body code: 
  1D decomposition à 
“1.5D” 
 

Does this work in general? 
•  Yes, for certain loops 

and array expressions 
•  Relies on basic result in 

group theory 
•  Compiler work TBD 

IPDPS’13 paper (Driscoll, Georganas, Koanantakool, 
Solomonik, Yelick) 



N-Body Speedups on IBM-BG/P (Intrepid) 
8K cores, 32K particles 

11.8x speedup 

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik 
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Performance results on Cray XE6  
(24K cores, 32k × 32k matrices) 

2.5D + Overlap 
2.5D (Avoiding) 
2D + Overlap 
2D (Original) 

Communication Overlap Complements Avoidance 

•  Even with communication-optimal algorithms (minimized bandwidth) there are still 
benefits to overlap and other things that speed up networks 

•  Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et 
al, SC12 



Stepping Back 

• Communication avoidance as old at tiling 
• Communication optimality as old as Hong/Kung 
• What’s new? 

- Raising the level of abstraction at which we optimize 
- BLAS2 à BLAS3 à LU or SPMV/DOT à Krylov 
- Changing numerics in non-trivial ways 
- Rethinking methods to models 

• Communication and synchronization avoidance 
• Software engineering: breaking abstraction 
• Compilers: inter-procedural optimizations 

72"



Are there Exascale Algorithms? 

Yes, but when you’re worrying about  
• Scaling 
• Synchronization,  
• Dynamic system behavior 
•  Irregular algorithms 
• Resilience 
don’t forget what’s important 

Location, Location, Location 


