

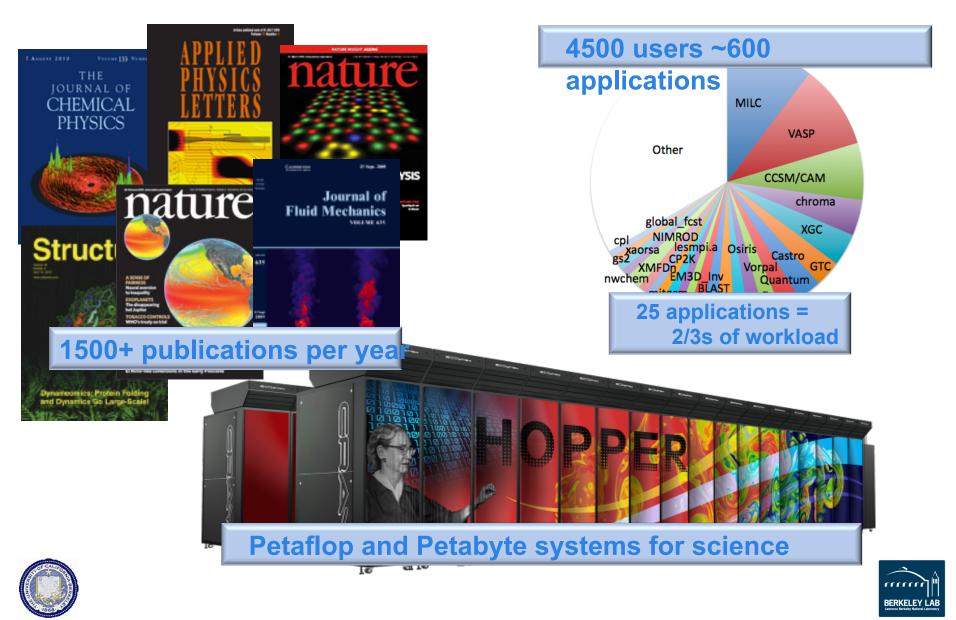
Beyond UPC

Kathy Yelick

EECS Professor, UC Berkeley

Associate Laboratory Director for Computing Sciences Lawrence Berkeley National Laboratory

The National Energy Research Scientific Computing Center Enables Science



Requirements For Future

- 2x gap in demand vs. capability across centers
- 10x gap by 2015 (NERSC)
- ~650 applications with these programming models
 - 75% Fortran, 45% C/C++,
 10% Python
 - 85% MPI, 25% with OpenMP
- 10% PGAS or global objects
 These are self-reported, likely low and may miss future users

LARGE SCALE COMPUTING AND STORAGE REQUIREMENT Scientific Grand Challenges FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND LARGE SCALE COMPUTING AND STORAGE REQUIREMENTS ROLE OF COMPLITING AT THE EXTREME SCA Scientific Grand Challenges CHALLENGES FOR UNDERSTANDING THE LARGE SCALE COMPUTING AND STORAGE REQUIREME DUANTUM UNIVERSE AND THE ROLE OF COMPUTING AT THE EXTREME SCALE Scientific Grand Challenges Opportunities in Biology at the Scientific Grand Challenges Scientific Grand Challenges for National Security: vanced Scientific Computing Research THE BOLE OF COMPUTING AT THE EXTREME SCALE IERSC / ASCR Scientific Grand Challenges . 2011 THE ROLE OF COMPUTING AT THE EXTREME SCALL Exascale Workshop Panel Meeting Report

LARGE SCALE

Scientific Grand Challenges

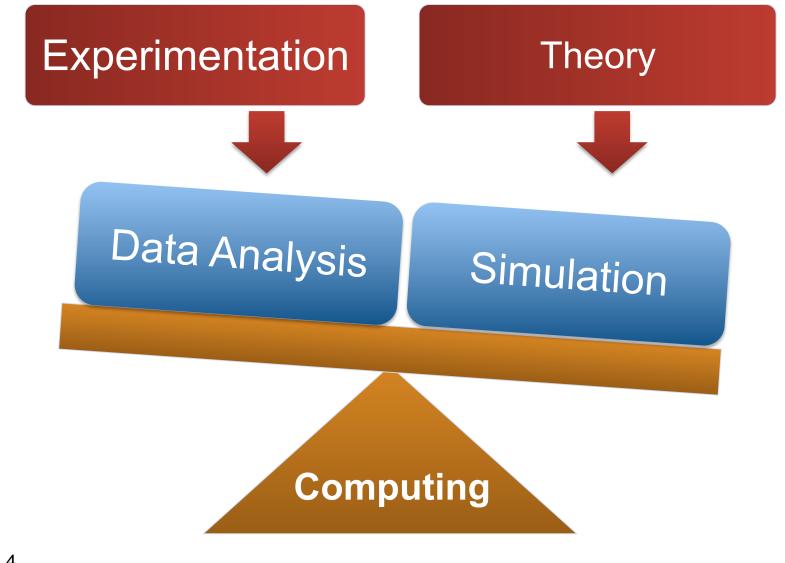
CHALLENGES IN CLIMATE CHANGE SCIENCE AND RE ROLE OF COMPUTING AT THE EXTREME SCALE

3

http://science.energy.gov/ascr/news-and-

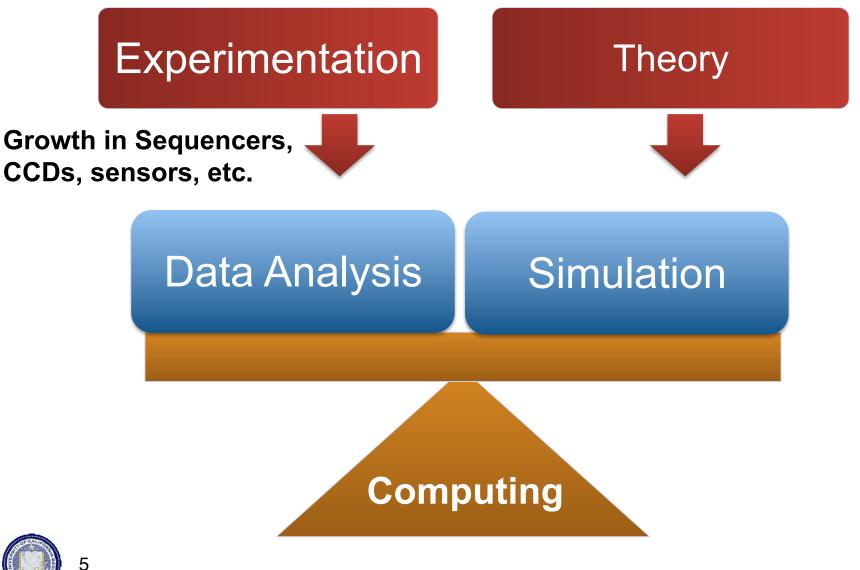
https//wwwerersc.gov/science/requirements-reviews/final-

Computing = Data Analysis and Simulation

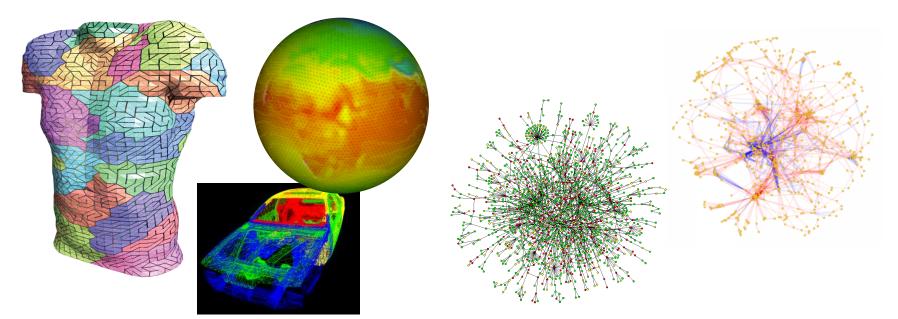


ERKELEY

Data analysis is equally important in Science



Programming Challenges and Solutions



Message Passing Programming

Divide up domain in pieces Each compute one piece Exchange (send/receive) data

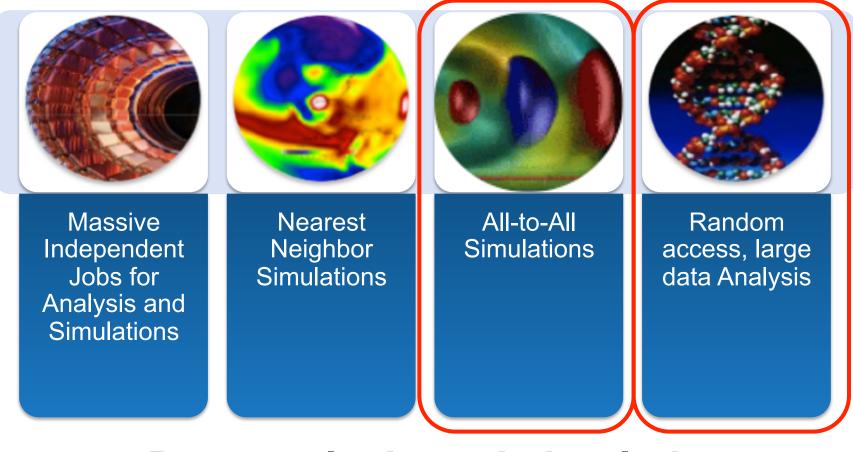
PVM, MPI, and many libraries

Global Address Space Programming

Each start computing Grab whatever you need whenever

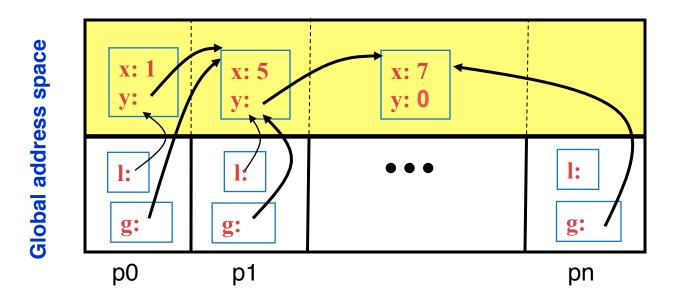
Global Address Space Languages and Libraries

Science Across the "Irregularity" Spectrum



Data analysis and simulation

- Global address space: thread may directly read/write remote data
 - Convenience and low overhead
- Partitioned: data is designated as local or global
 - Locality and scalability



UPC: A PGAS language based on C

See CS267 UPC Lectures for more details

Or attend SC13 tutorial on advanced UPC!

UPC Execution Model

- A number of threads working independently in a SPMD fashion
 - Number of threads specified at compile-time or run-time; available as program variable THREADS
 - MYTHREAD specifies thread index (0..THREADS-1)
 - upc_barrier is a global synchronization: all wait
 - There is a form of parallel loop for distributing work
- UPC has locks to protect shared variables: upc_lock_t
 upc_lock_t *myLock = upc_all_lock_alloc();
 upc_lock (myLock)
 critical region
 upc_unlock (myLock)
 upc_lock_free (myLock);

6/28/13

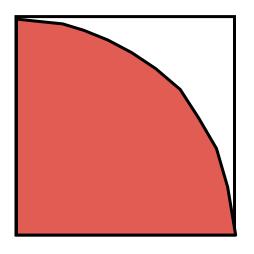
Example: Monte Carlo Pi Calculation

- Estimate Pi by throwing darts at a unit square
- Calculate percentage that fall in the unit circle

-Area of square = $r^2 = 1$

-Area of circle quadrant = $\frac{1}{4} * \pi r^2 = \frac{\pi}{4}$

- Randomly throw darts at x,y positions
- Compute ratio:
 - -# points inside / # points total
 - $-\pi = 4$ *ratio



Assume serial function:

int hits ()

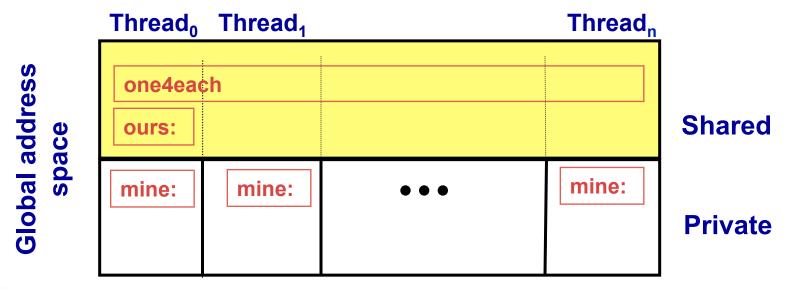
- for x, y, return 1 if $x^2 + y^2 < 1$, 0 otherwise ^r

11

Private vs. Shared Variables in UPC

- Normal C variables and objects are allocated in the private memory space for each thread.
- Shared variables are allocated only once, with thread 0 shared int ours; // use sparingly: performance int mine;

int one4each [THREADS]; // cyclic layout



12

Pi in UPC: Shared Memory Style

 Parallel computing of pi, without the bug shared int hits; main(int argc, char **argv) { int i, my_hits, my trials = 0; create a lock upc lock t *hit lock = upc all lock alloc(); int trials = atoi(argv[1]); my trials = (trials + THREADS - 1)/THREADS; srand(MYTHREAD*17); accumulate hits <u>for (i=0; i < my trials; i++)</u> locally my_hits += hit(); upc lock(hit lock); hits += my hits; accumulate upc unlock(hit lock); across threads upc barrier; if (MYTHREAD == 0)printf("PI: %f", 4.0*hits/trials);

Pi in UPC: Shared Array Version

- Alternative fix to the race condition
- Have each thread update a separate counter:
 - -But do it in a shared array
 - -Have one thread compute sum

shared int all_hits [THREADS];

main(int argc, char **argv) {

all_hits is shared by all processors

... declarations and initialization code omitted

all hits[MYTHREAD] += hit();

upc_barrier;

update element with local affinity

if (MYTHREAD == 0)

for (i=0; i < THREADS; i++) hits += all_hits[i];</pre>

printf("PI estimated to %f.", 4.0*hits/trials);

int *p1;

- These pointers are fast (just like C pointers)
- Use to access local data in part of code performing local work
- Often cast a pointer-to-shared to one of these to get faster access to shared data that is local

shared int *p2;

- Use to refer to remote data
- Larger and slower due to test-for-local + possible communication
- Typical implementation has a thread ID + address + phase

int *shared p3;

Not recommended

shared int *shared p4;

Use to build shared linked structures, e.g., a linked list

UPC Arrays and Collectives

Gather threads together for data-parallel style operations

Pi in UPC: Data Parallel Style

- The previous version of Pi works, but is not scalable: – On a large # of threads, the locked region will be a bottleneck
- Use a reduction for better scalability

```
#include <bupc collectivev.h>
                                Berkeley collectives
/ shared int hits; no shared variables
main(int argc, char **argv) {
    for (i=0; i < my trials; i++)
      my hits += hit();
   my hits = // type, input, thread, op
      bupc allv reduce(int, my hits, 0, UPC ADD);
    // upc barrier;
                            barrier implied by collective
    if (MYTHREAD == 0)
     printf("PI: %f", 4.0*my hits/trials);
```


Vector Addition with upc_forall

- The vector addition can be written as follows
 - The code would be correct but slow if the affinity expression were i+1 rather than i.
 - Equivalent code could use "&sum[i]" for affinity
 - Better style: if sum layout changes, still get good affinity

```
#define N 100*THREADS
shared [in0:0]v1[N], v2[N], sum[N];
void main() {
    int i;
    upc_forall(i=0; i<N; i++; i)
        sum[i]=v1[i]+v2[i];
}</pre>
```

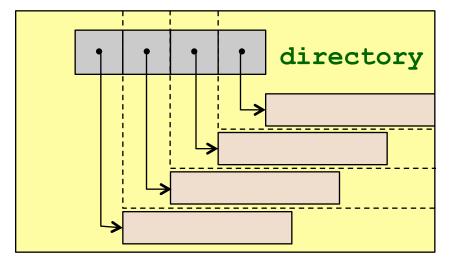

Distributed Arrays Directory Style

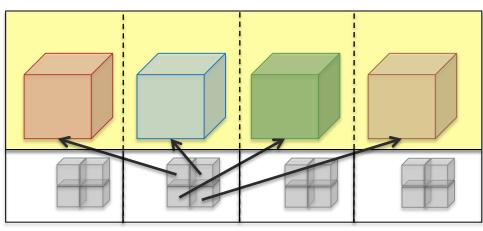
 Many UPC programs avoid the UPC style arrays in factor of directories of objects

typedef shared [] double *sdblptr;

shared sdblptr directory[THREADS];

directory[i]=upc_alloc(local_size*sizeof(double));





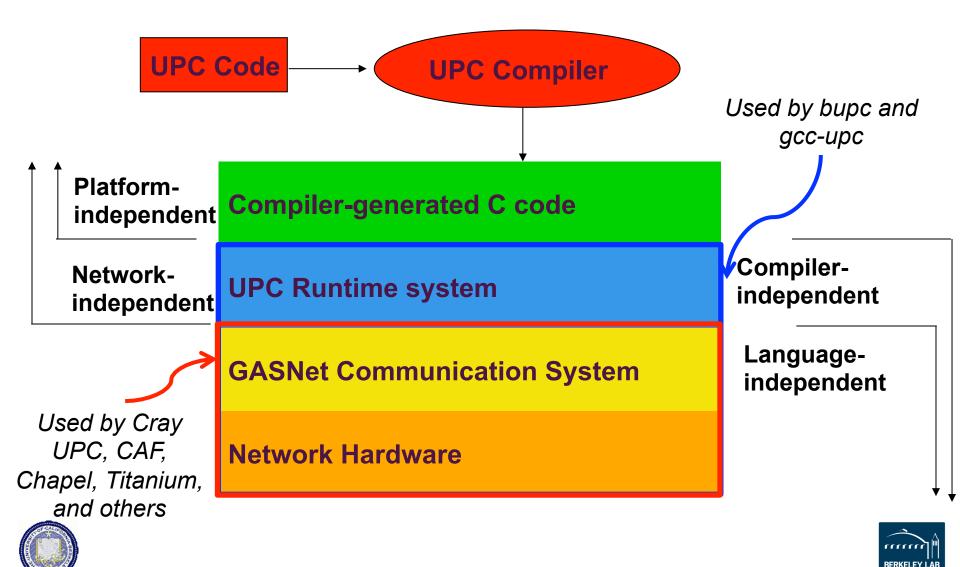
- These are also more general:
 - Multidimensional, unevenly distributed
 - Ghost regions around blocks
 6/28/13

physical and conceptual 3D array layout

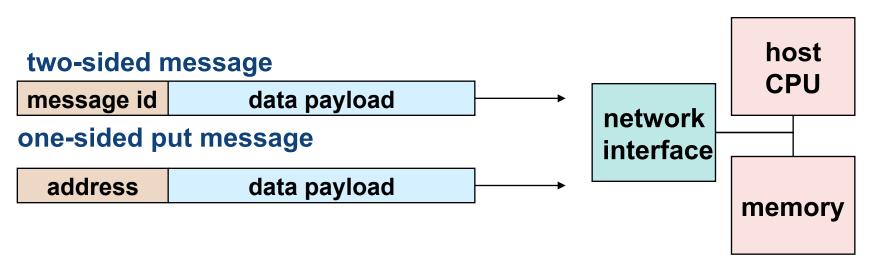
19

Performance of UPC

Berkeley UPC Compiler



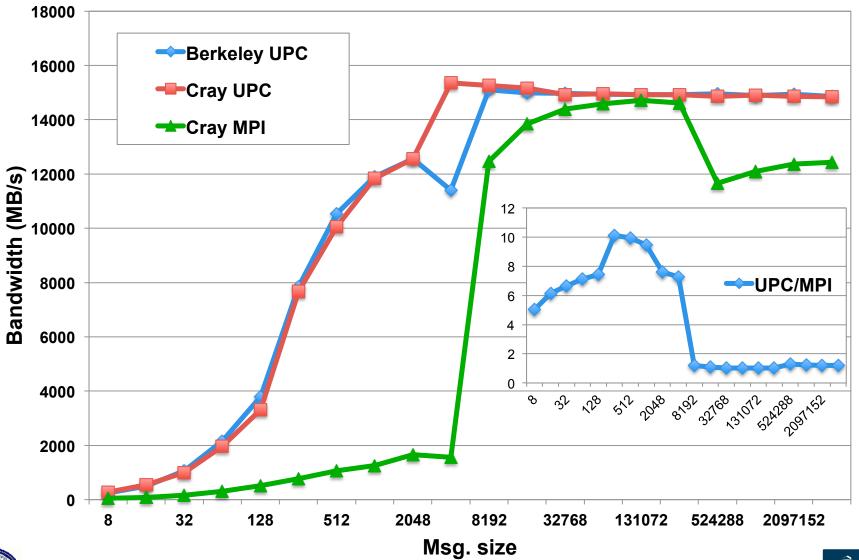
Avoiding Synchronization in Communication



- Two-sided message passing (e.g., MPI) requires a matching receive to identify memory address to put data

 Couples data transfer with synchronization (but it ain't free!)
- Global address space decouples synchronization
 - Separately synchronize as needed
 - Never have to say "receive"
- NB: MPI 1-sided can have same performance advantages

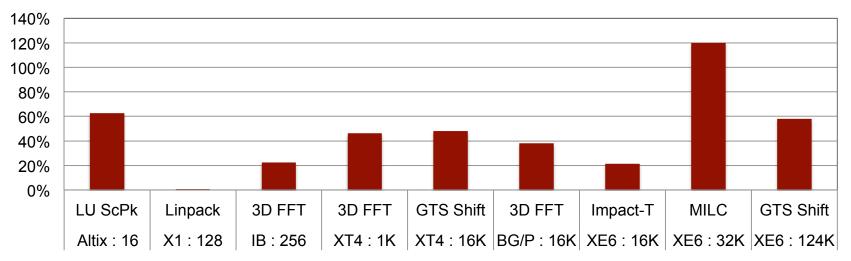
Bandwidths on Cray XE6 (Hopper)



BERKELEY LAB

PGAS's One-sided communication has performance advantages

Speedup of PGAS over MPI



Performance advantages for PGAS over MPI from

- Lower latency and overhead
- Better pipeline (overlapping communication with communication)
- Overlapping communication with computation
- Use of bisection bandwidth

PyGAS: Combine two popular ideas

- Python
 - -No. 6 Popular on http://langpop.com and extensive libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX
 -10% of NERSC projects use Python
- PGAS
 - -Convenient data and object sharing
- PyGAS : Objects can be shared via *Proxies* with operations intercepted and dispatched over the network:

num	=	1+2*j	
	=	share(num,	from=0)

print pxy.real # shared read
pxy.imag = 3 # shared write
print pxy.conjugate() # invoke

- Leveraging duck typing:
 - Proxies behave like original objects.
 - Many libraries will automatically work.

Antisocial Parallelism: Avoiding, Hiding and Managing Communication

Kathy Yelick

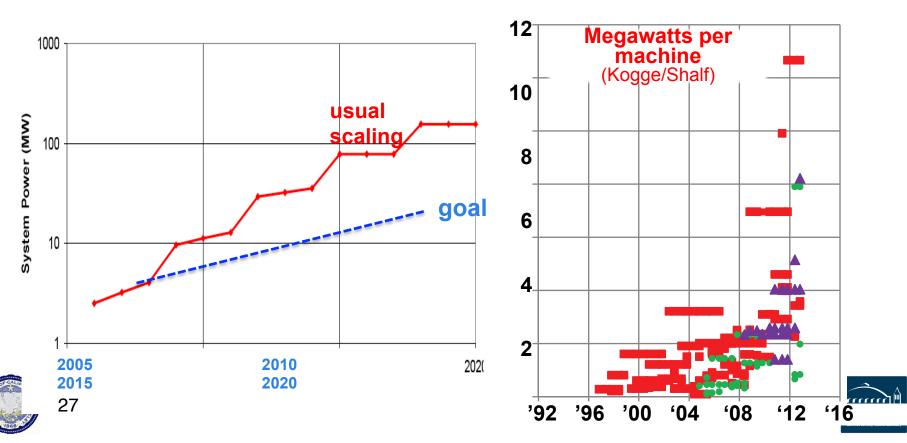
EECS Professor, UC Berkeley

Associate Laboratory Director for Computing Sciences Lawrence Berkeley National Laboratory

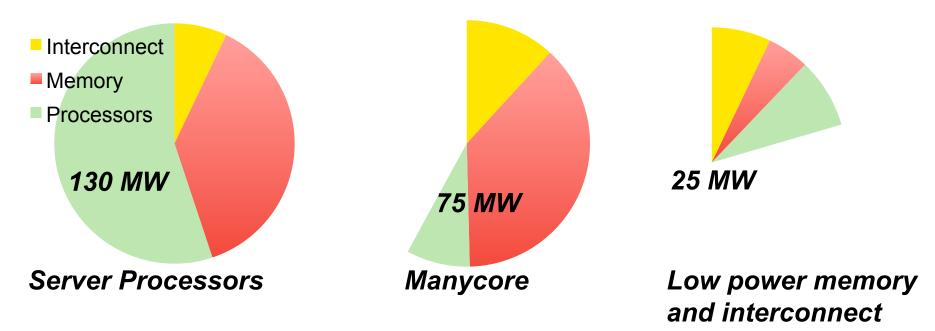
Challenge #1: Computing is energy-constrained

At ~\$1M per MW, energy costs are substantial

- 1 petaflop in 2008 used 3 MW
- 1 exaflop in 2018 possible in 200 MW with "usual" scaling
- Goal: 1 exaflop in 20 MW = 20 pJ / operation



New Processors Means New Software



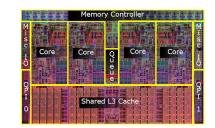
- Exascale will have chips with thousands of tiny processor cores, and a few large ones
 - -Sea of lighweight cores with heavyweight "service" nodes
 - Or lightweight cores as accelerators to CPUs
- Low power memory and storage technology are essential
 - Probably with more software management to avoid waste

Challenge #2: Nodes with Heterogeneity and Locality

Cell phone

processor (0.1

- Case for heterogeneity
 - Many small cores and SIMD for energy efficiency; few CPUs for OS / speed



- Split memory between CPU and "Accelerators"
 - Driven by market history and simplicity, but may not last
 - Communication: The bus is a significant bottleneck.
- Co-Processor interface between CPU and Accelerator
 - Default is on CPU, only run "parallel" code in limited regions
 - Why are the minority CPUs in charge?

Avoid vicious cycle: Programming model should be designed for future, not for current/past constraints

29

Memory Speed vs. Capacity Conundrum

Cost (increases for higher capacity and cost/bit increases with bandwidth)

		Bandwidth\Capacity	16 GB	32 GB	64 GB	128 GB	256 GB	512 GB	1 TB	
1	Ρ	4 TB/s								
	0	2 TB/s	Stack/PNM						op	otical
	w	1 TB/s			Interposer					
		512 GB/s				HMC organic				
e	e	256 GB/s							NVRAM	
	r	128 GB/s						DIMM		

- Because of cost and power issues, we cannot have both high memory bandwidth and large memory capacity
- The colored region is feasible in 2017

Compute intensive architecture focus on upper-left Data Intensive architecture focus on lower right

Slide source: John Shalf

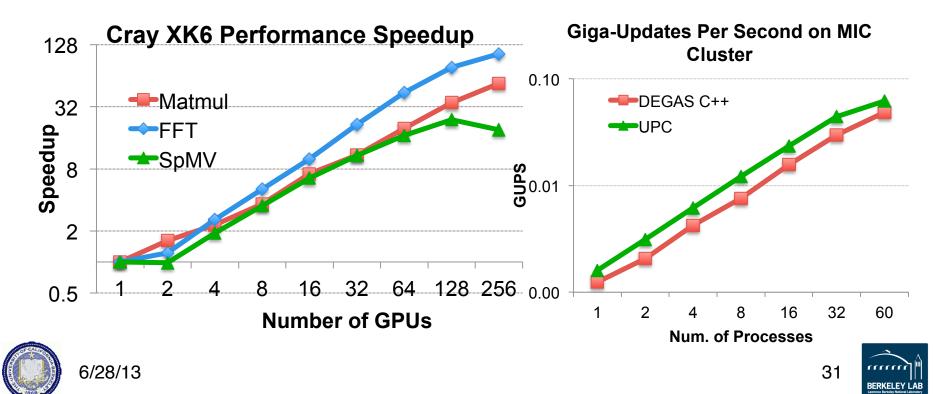
block

Compiler-free "UPC++" eases interoperability

global_array_t<int, 1> A(10); // shared [1] int A[10];

L-value reference (write/put) **A[1] = 1;** // A[1] -> global_ref_t ref(A, 1); ref = 1;

R-value reference (read/get) int n = A[1] + 1; // A[1] -> global_ref_t ref(A, 1); n = (int)ref + 1;



One-sided communication works everywhere

PGAS programming model

```
*p1 = *p2 + 1;
A[i] = B[i];
```

```
upc_memput(A,B,64);
```


It is implemented using one-sided communication: put/get

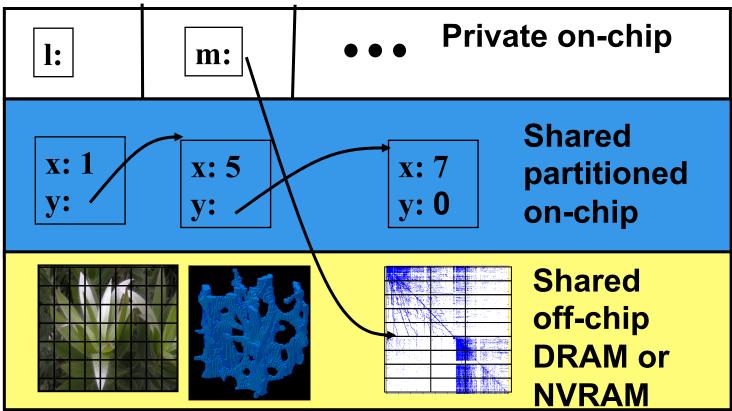
Support for one-sided communication (DMA) appears in:

- Fast one-sided network communication (RDMA, Remote DMA)
- Move data to/from accelerators
- Move data to/from I/O system (Flash, disks,..)

Movement of data in/out of local-store (scratchpad) memory

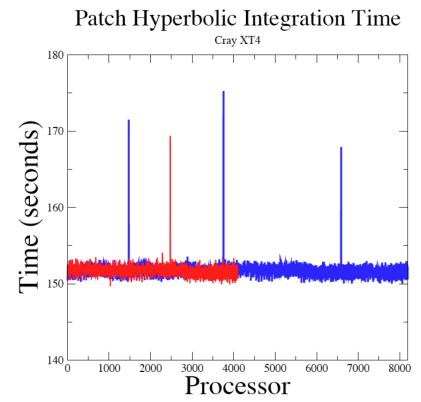
Vertical PGAS

- New type of wide pointer?
 - Points to slow (offchip memory)
 - -The type system could get unwieldy quickly



Challenge #3: Synchronization is Expensive

- Machines will have Frequent Faults and "Performance Instability"
- Do all applications become "irregular"?
- Locality-Load balance trade-off
 - -Most work on dynamic scheduling is inside a shared memory node
 - Largest variability will be between nodes

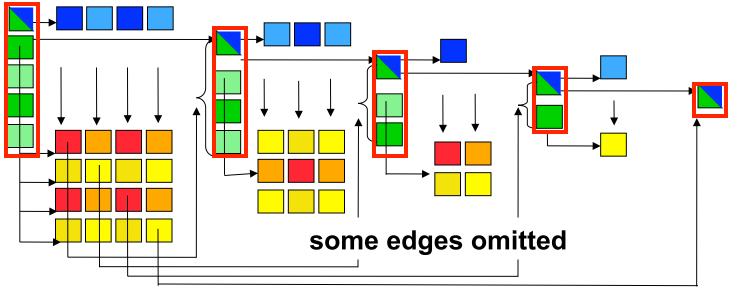


Brian van Straalen, DOE Exascale Research Conference, April 16-18, 2012. *Impact of persistent ECC memory faults.*

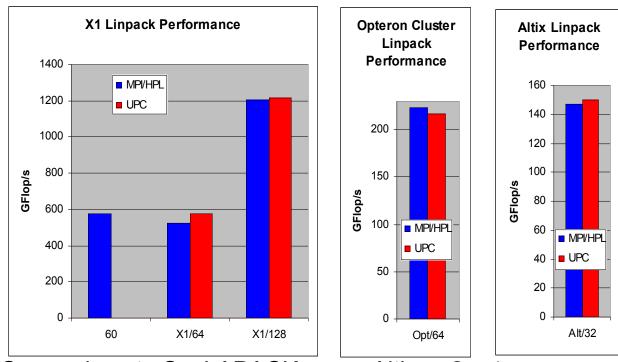
Event Driven LU in UPC

- DAG Scheduling in a distributed (partitioned) memory context
- Assignment of work is static; schedule is dynamic
- Ordering needs to be imposed on the schedule
 - Critical path operation: Panel Factorization
- General issue: dynamic scheduling in partitioned memory
 - Can deadlock in memory allocation
 - "memory constrained" lookahead

Uses a Berkeley extension to UPC to remotely synchronize



UPC HPL Performance



• MPI HPL numbers from HPCC database

•Large scaling:

- •2.2 TFlops on 512p,
- •4.4 TFlops on 1024p (Thunder)

- Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
 - ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
 - UPC LU (block size 256) 33.60 GFlop/s, (block size 64) 26.47 GFlop/s
- n = 32000 on a 4x4 process grid
 - ScaLAPACK 43.34 GFlop/s (block size = 64)
 - UPC 70.26 Gflop/s (block size = 200)

Two Distinct Parallel Programming Questions

• What is the parallel control model?

SPMD "default" plus data parallelism through collectives and dynamic tasking within nodes or between nodes through libraries

Hierarchical SPMD (demonstrated in Titanium)

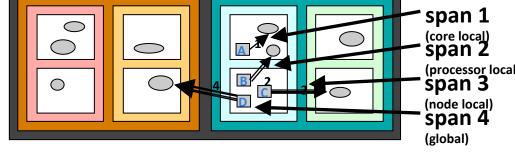
Thread teams may execute distinct tasks

```
partition(T) {
   { model_fluid(); }
   { model_muscles(); }
   { model_electrical(); }
}
```

Hierarchy for machine / tasks

-Nearby: access shared data

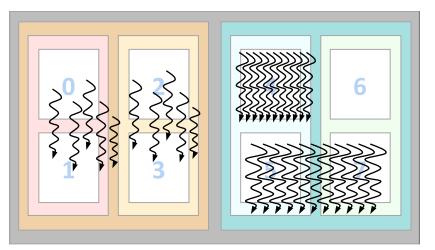
- -Far away: copy data
- Advantages:
 - -Provable pointer types
 - -Mixed data / task style



-Lexical scope prevents some deadlocks

38

Hierarchical machines → Hierarchical programs



- Hierarchical memory model may be necessary (what to expose vs hide)
- Two approaches to supporting the hierarchical control
- Option 1: Dynamic parallelism creation
 - Recursively divide until... you run out of work (or hardware)
 - Runtime needs to match parallelism to hardware hierarchy
- Option 2: Hierarchical SPMD with "Mix-ins"
 - Hardware threads can be grouped into units hierarchically
 - Add dynamic parallelism with voluntary tasking on a group
 - Add data parallelism with collectives on a group

Option 1 spreads threads, option 2 collecte them together

Challenge #4: Communication is expensive

Communication is expensive... ... time and energy

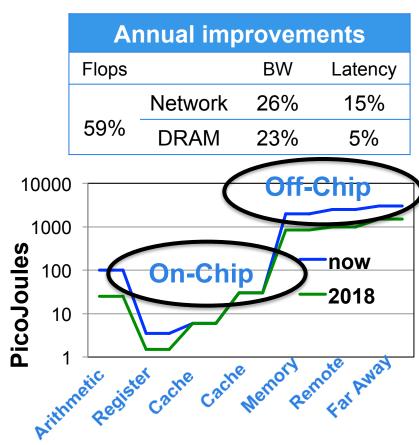
Cost components:

- Bandwidth: # of words
- Latency: # messages

Strategies

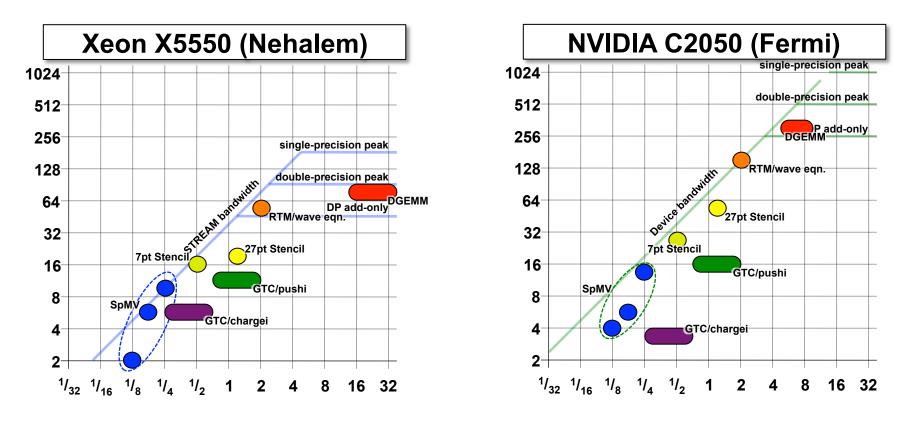
- Overlap: hide latency
- Avoid: algorithms to reduce bandwidth use and number of messages (latency)

Hard to change: Latency is physics; bandwidth is money!



Autotuning Gets Kernel Performance Near Optimal

- Roofline model captures bandwidth and computation limits
- Autotuning gets kernels near the roof



Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,...

Good news

-Although careful tuning is necessary

-Autotuning helps save programmer time

But many kernels are bandwidth limited

- -Stencils
- -Sparse matrix-vector multiply
- -Dense matrix-vector multiply
- A problem for local memory and network

42

Avoiding Communication in Iterative Solvers

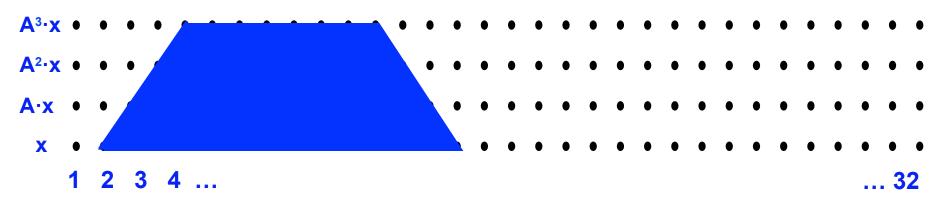
- Consider Sparse Iterative Methods for *Ax=b*
 - Krylov Subspace Methods: GMRES, CG,...
- Solve time dominated by:
 - -Sparse matrix-vector multiple (SPMV)
 - Which even on one processor is dominated by "communication" time to read the matrix
 - -Global collectives (reductions)
 - Global latency-limited
- Can we lower the communication costs?
 - Latency: reduce # messages by computing multiple reductions at once
 - -Bandwidth to memory, i.e., compute Ax, A²x, ... A^kx with one read of A

Joint work with Jim Demmel, Mark Hoemman, Marghoob Mohiyuddin

Communication Avoiding Kernels

The Matrix Powers Kernel : [Ax, A²x, ..., A^kx]

• Replace k iterations of $y = A \cdot x$ with $[Ax, A^2x, ..., A^kx]$



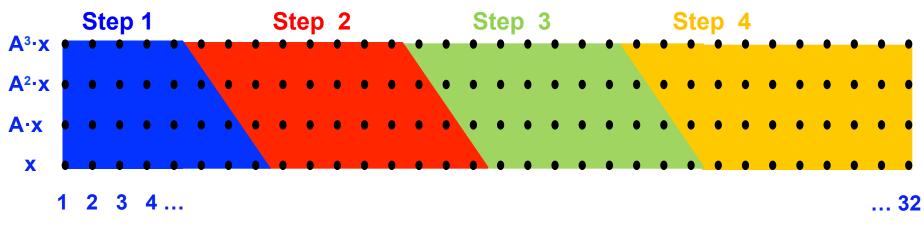
- Idea: pick up part of A and x that fit in fast memory, compute each of k products
- Example: A tridiagonal matrix (a 1D "grid"), n=32, k=3
- General idea works for any "well-partitioned" A

Communication Avoiding Kernels

(Sequential case)

The Matrix Powers Kernel : [Ax, A²x, ..., A^kx]

- Replace k iterations of $y = A \cdot x$ with $[Ax, A^2x, ..., A^kx]$
- Sequential Algorithm



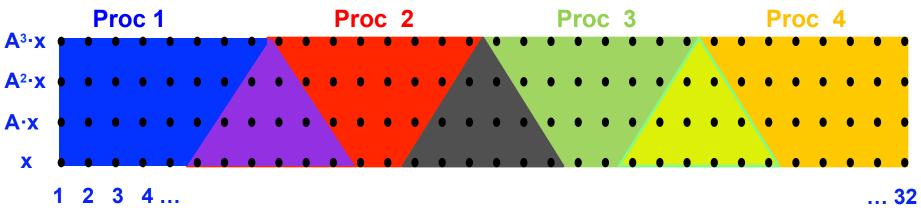
- Example: A tridiagonal, n=32, k=3
- Saves bandwidth (one read of A&x for k steps)
- Saves latency (number of independent read events)

Communication Avoiding Kernels:

(Parallel case)

The Matrix Powers Kernel : [Ax, A²x, ..., A^kx]

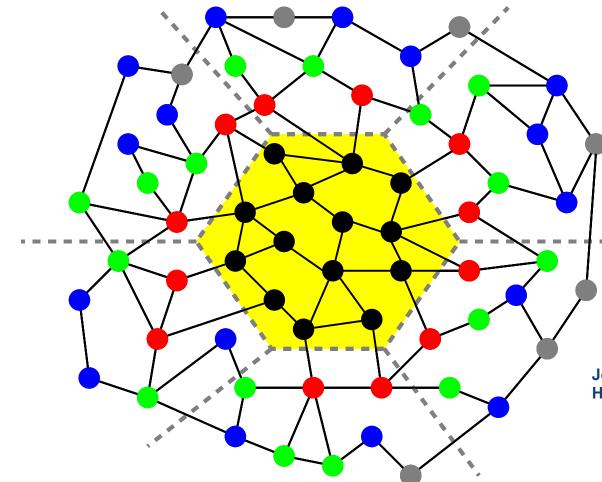
- Replace k iterations of $y = A \cdot x$ with $[Ax, A^2x, ..., A^kx]$
- Parallel Algorithm



- Example: A tridiagonal, n=32, k=3
- Each processor works on (overlapping) trapezoid
- Saves latency (# of messages); Not bandwidth

But adds redundant computation

Matrix Powers Kernel on a General Matrix



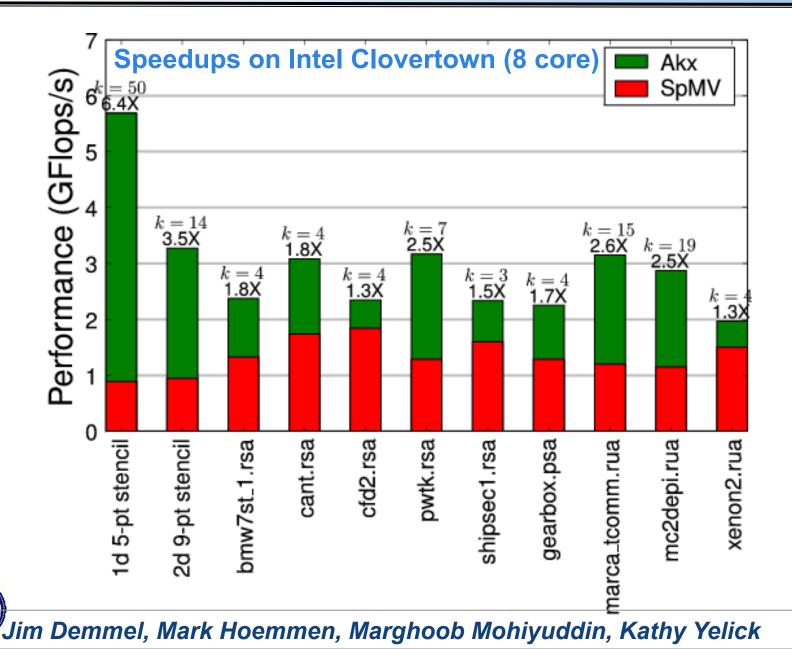
For implicit memory management (caches) uses a TSP algorithm for layout

Joint work with Jim Demmel, Mark Hoemman, Marghoob Mohiyuddin

• Saves communication for "well partitioned" matrices

- Serial: O(1) moves of data moves vs. O(k)
- Parallel: O(log p) messages vs. O(k log p)

A^kx has higher performance than Ax



BERKELEY LAB

Minimizing Communication of GMRES to solve Ax=b

• GMRES: find x in span{b,Ab,...,A^kb} minimizing || Ax-b ||₂

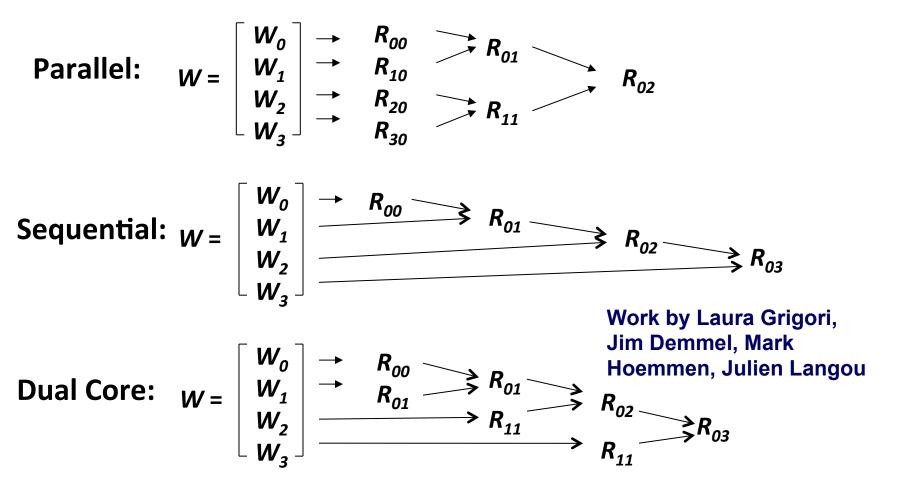
```
Standard GMRES
for i=1 to k
w = A · v(i-1) ... SpMV
MGS(w, v(0),...,v(i-1))
update v(i), H
endfor
solve LSQ problem with H
```

Communication-avoiding GMRES W = [v, Av, A²v, ... , A^kv] [Q,R] = TSQR(W) ... "Tall Skinny QR" build H from R solve LSQ problem with H

Sequential case: #words moved decreases by a factor of k Parallel case: #messages decreases by a factor of k

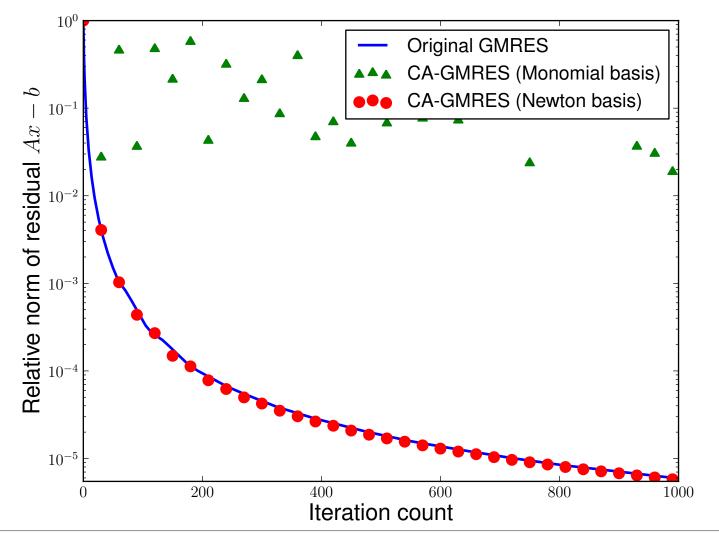
•Oops – W from power method, precision lost!

TSQR: An Architecture-Dependent Algorithm



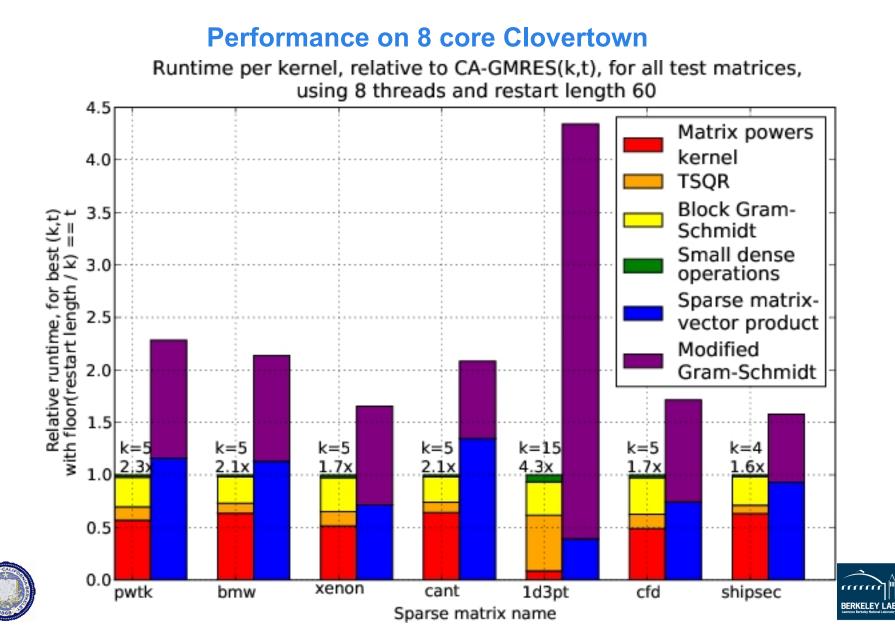
Multicore / Multisocket / Multirack / Multisite / Out-of-core: ? Can choose reduction tree dynamically

Matrix Powers Kernel (and TSQR) in GMRES



Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

Communication-Avoiding Krylov Method (GMRES)



Optimality of Communication

Lower bounds, (matching) upper bounds (algorithms) and a question:

Can we train compilers to do this?

See: http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/ EECS-2013-61.pdf

Beyond Domain Decomposition 2.5D Matrix Multiply on BG/P, 16K nodes / 64K cores

c = 16 copies

Matrix multiplication on 16,384 nodes of BG/P

Surprises:

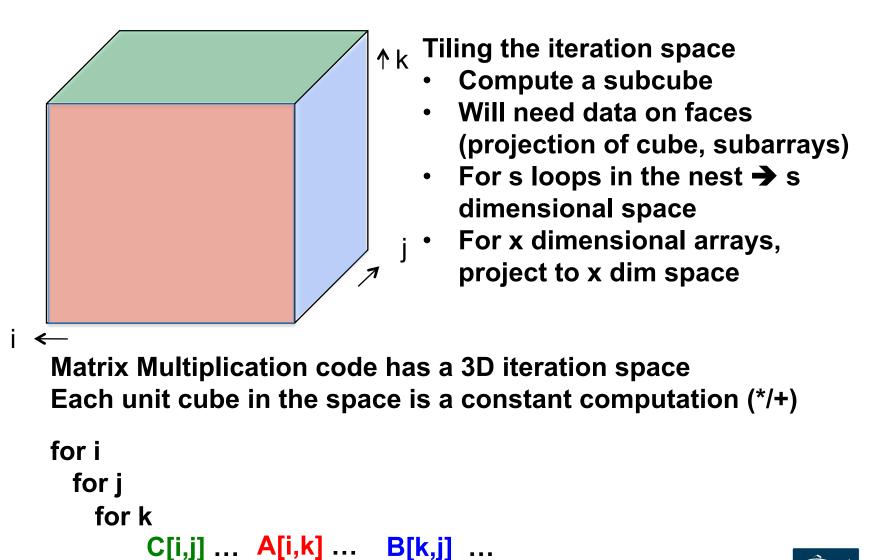
- Even Matrix Multiply had room for improvement
- Idea: make copies of C matrix (as in prior 3D algorithm, but not as many)
- Result is provably optimal in communication

Lesson: Never waste fast memory

Can we generalize for compiler writers?

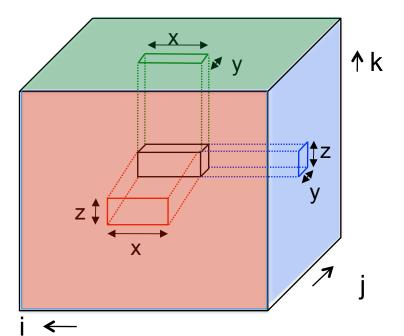
EuroPar'11 (Solomonik, Demmel) SC'11 paper (Solomonik, Bhatele, Demmel)

Towards Communication-Avoiding Compilers: Deconstructing 2.5D Matrix Multiply



Deconstructing 2.5D Matrix Multiply

Solomonik & Demmel



Tiling in the k dimension

- k loop has dependencies because C (on the top) is a Left-Hand-Side variable C += ..
- Advantages to tiling in k:
 - More parallelism \rightarrow
 - Less synchronization
 - Less communication

What happens to these dependencies?

- All dependencies are vertical k dim (updating C matrix)
- Serial case: compute vertical block column in order
- Parallel case:
 - 2D algorithm (and compilers): never chop k dim
 - 2.5 or 3D: Assume + is associative; chop k, which implies replication of C matrix

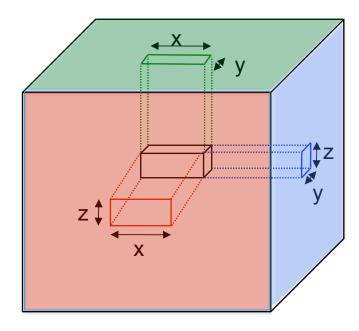
Beyond Domain Decomposition

•	 Much of the work on compilers is based on
Î.	owner-computes
x +=	 For MM: Divide C into chunks, schedule movement of A/B
x +=	 In this case domain decomposition becomes replication
x +=	 Ways to compute C "pencil"
	1. Serially
x +=	2. Parallel reduction Standard vectorization trick
	3. Parallel asynchronous (atomic) updates
	4. Or any hybrid of these
\downarrow	 For what types / operators does this work?
	– "+" is associative for 1,2 rest of RHS is "simple"
Using x for C[i,j]	here – and commutative for 3
57	

|| | BERKELEY LAB

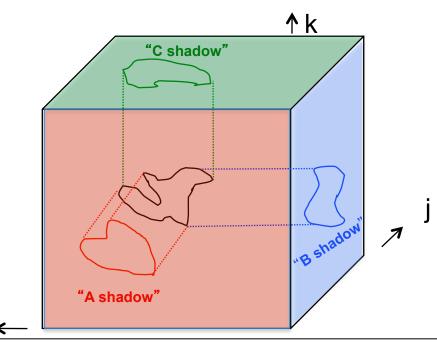
Lower Bound Idea on C = A*B

Iromy, Toledo, Tiskin



"Unit cubes" in black box with side lengths x, y and z

- = Volume of black box
- = x*y*z
- = (#A s * #B s * #C s)^{1/2}
- = (xz * zy * yx)^{1/2}

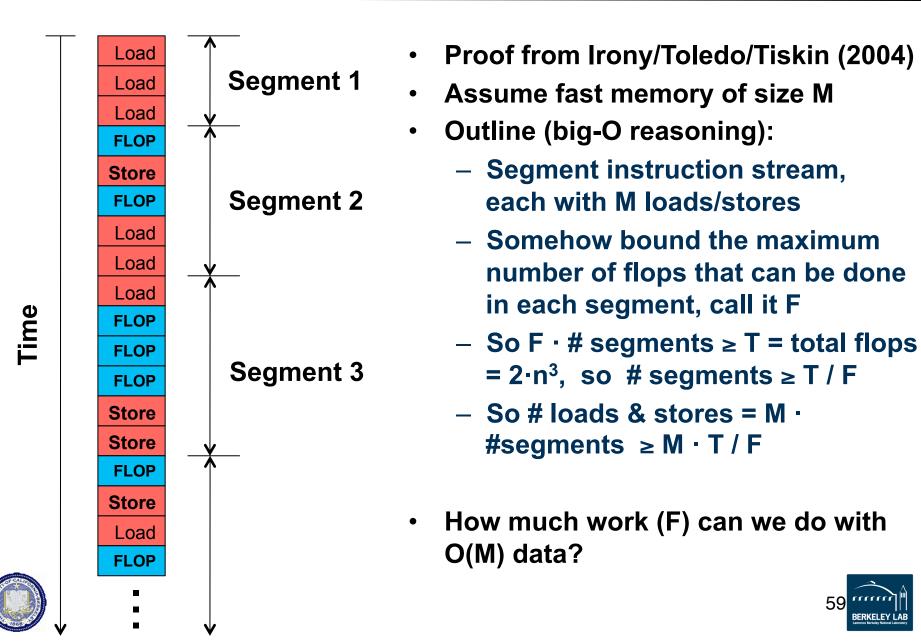


(i,k) is in **"A shadow"** if (i,j,k) in 3D set (j,k) is in **"B shadow"** if (i,j,k) in 3D set (i,j) is in **"C shadow"** if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949) # cubes in 3D set = Volume of 3D set ≤ (area(A shadow) * area(B shadow) *

area(C shadow)) ^{1/2}

Lower Bound: What is the minimum amount of communication required?



Recall optimal sequential Matmul

 Naïve code for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)

- Thm: Picking b = $M^{1/2}$ attains lower bound: #words_moved = $\Omega(n^3/M^{1/2})$
- Where does 1/2 come from? Can we compute these for arbitrary programs?

Generalizing Communication Lower Bounds and Optimal Algorithms

- For serial matmul, we know #words_moved = Ω (n³/M^{1/2}), attained by tile sizes M^{1/2} x M^{1/2}
- Thm (Christ, Demmel, Knight, Scanlon, Yelick):

For any program that "smells like" nested loops, accessing arrays with subscripts that are linear functions of the loop indices, $\#words_moved = \Omega$ ($\#iterations/M^e$), for some e we can determine

- Thm (C/D/K/S/Y): Under some assumptions, we can determine the optimal tiles sizes
- Long term goal: All compilers should generate communication optimal code from nested loops

New Theorem applied to Matmul

- for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)
- Record array indices in matrix $\boldsymbol{\Delta}$

$$\Delta = \begin{pmatrix} i & j & k \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}$$

- Solve LP for $x = [xi,xj,xk]^T$: max $\mathbf{1}^T x$ s.t. $\Delta x \le \mathbf{1}$ -Result: $x = [1/2, 1/2, 1/2]^T$, $\mathbf{1}^T x = 3/2 = s_{HBL}$
- Thm: #words_moved = $\Omega(n^3/M^{S_{HBL}-1}) = \Omega(n^3/M^{1/2})$ Attained by block sizes $M^{xi}, M^{xj}, M^{xk} = M^{1/2}, M^{1/2}, M^{1/2}$

New Theorem applied to Direct N-Body

- for i=1:n, for j=1:n, F(i) += force(P(i) , P(j))
- Record array indices in matrix Δ

$$\Delta = \begin{pmatrix} i & j \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{array}{c} F \\ P(i) \\ P(j) \end{array}$$

- Solve LP for $x = [xi,xj]^T$: max $\mathbf{1}^T x$ s.t. $\Delta x \le \mathbf{1}$ -Result: $x = [1,1], \mathbf{1}^T x = 2 = s_{HBL}$
- Thm: #words_moved = $\Omega(n^2/M^{SHBL-1}) = \Omega(n^2/M^1)$ Attained by block sizes $M^{xi}, M^{xj} = M^1, M^1$

New Theorem applied to Random Code

- for i1=1:n, for i2=1:n, ..., for i6=1:n A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6))A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))
- Record array indices i1 i2 i3 i4 i6 i5 $\Delta = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$ A1 0 in matrix Δ 0 0 A2 1 0 A3 0 1 A3.A4 0 1 A5 0 1 A6
- Solve LP for $x = [x1, ..., x7]^T$: max $\mathbf{1}^T x$ s.t. $\Delta x \leq \mathbf{1}$ -Result: x = [2/7,3/7,1/7,2/7,3/7,4/7], $\mathbf{1}^{\mathsf{T}}x = 15/7 = s_{\mathsf{HBL}}$ • Thm: #words_moved = $\Omega(n^{\mathbf{6}}/\mathsf{M}^{\mathsf{SHBL-1}}) = \Omega(n^{\mathbf{6}}/\mathsf{M}^{\mathbf{8}/7})$

Attained by block sizes M^{2/7}, M^{3/7}, M^{1/7}, M^{2/7}, M^{3/7}, M^{4/7}

General Communication Bound

- Given S subset of Z^k, group homomorphisms $\phi_1, \phi_2, ...,$ bound |S| in terms of $|\phi_1(S)|, |\phi_2(S)|, ..., |\phi_m(S)|$
- Def: Hölder-Brascamp-Lieb LP (HBL-LP) for $s_1, ..., s_m$: for all subgroups H < Z^k, rank(H) $\leq \Sigma_i s_i^* rank(\phi_i(H))$
- Thm (Christ/Tao/Carbery/Bennett): Given $s_1, ..., s_m$ $|S| \le \Pi_j |\phi_j(S)|^{s_j}$
- Thm: Given a program with array refs given by ϕ_j , choose s_j to minimize $s_{HBL} = \Sigma_j s_j$ subject to HBL-LP. Then

#words_moved = Ω (#iterations/M^{SHBL-1})

Comments

- Thm: (bad news) HBL-LP reduces to Hilbert's 10th problem over Q (conjectured to be undecidable)
- Thm: (good news) Another LP with same solution is decidable (but expensive, so far)
- Thm: (better news) Easy to write down LP explicitly in many cases of interest (eg all ϕ_i = {subset of indices})
- Thm: (good news) Easy to approximate, i.e. get upper or lower bounds on s_{HBL}
 - If you miss a constraint, the lower bound may be too large (i.e. s_{HBL} too small) but still worth trying to attain
 - Tarski-decidable to get superset of constraints (may get $\,s_{\rm HBL}$ too large)

Comments

- Attainability depends on loop dependencies
- Best case: none, or associate operators (matmul, nbody)
- Thm: When all ϕ_j = {subset of indices}, dual of HBL-LP gives optimal tile sizes:

HBL-LP: minimize 1^{T*s} s.t. $s^{T*\Delta} \ge 1^{T}$

Dual-HBL-LP: maximize $1^{T*}x$ s.t. $\Delta^*x \leq 1$

Then for sequential algorithm, tile i_i by M^{xj}

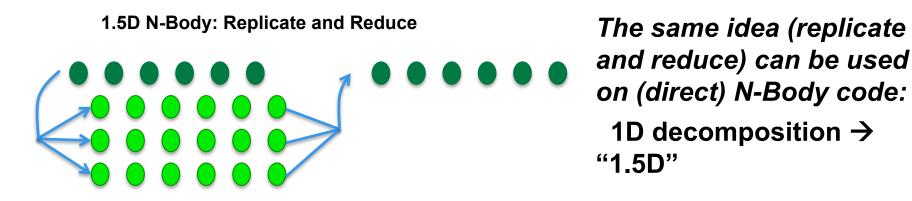
- Ex: Matmul: $s = [1/2, 1/2, 1/2]^T = x$
- Generality:
 - Extends to unimodular transforms of indices
 - Does not require arrays (as long as the data structures are injective containers)
 - Does not require loops as long as they can model computation

In theory there is no difference between theory and practice, but in practice there is.

-- Jan L. A. van de Snepscheut, Computer Scientist or

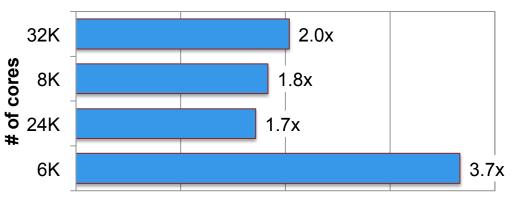
-- Yogi Berra, Baseball player and manager

Generalizing Communication Optimal Transformations to Arbitrary Loop Nests



Speedup of 1.5D N-Body over 1D

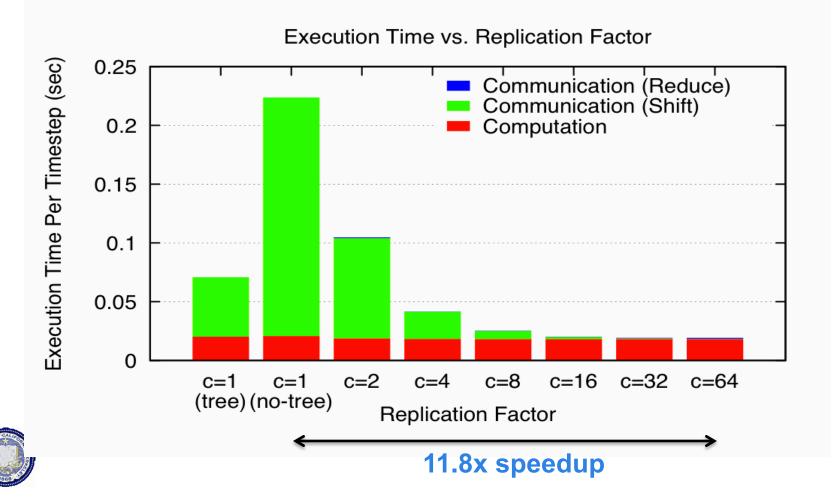
- Yes, for certain loops and array expressions
- Relies on basic result in group theory
- Compiler work TBD



IPDPS'13 paper (Driscoll, Georganas, Koanantakool, Solomonik, Yelick)

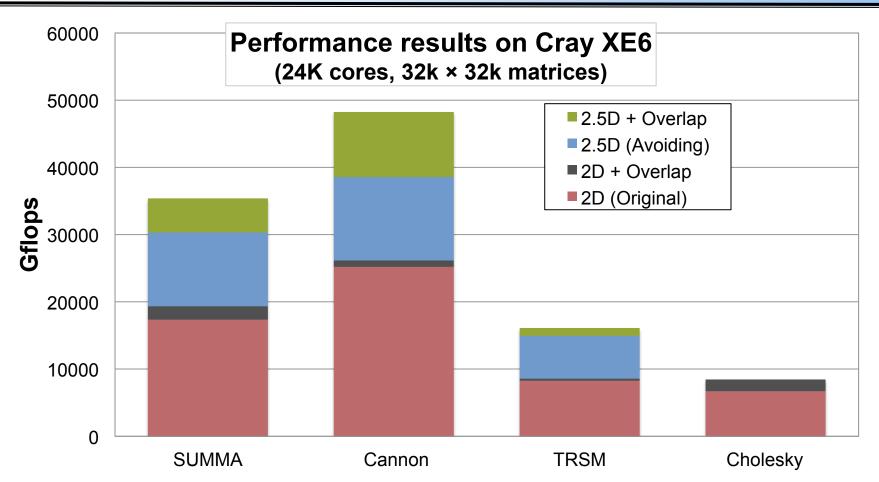
N-Body Speedups on IBM-BG/P (Intrepid) 8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik



BERKELEY

Communication Overlap Complements Avoidance



- Even with communication-optimal algorithms (minimized bandwidth) there are still benefits to overlap and other things that speed up networks
- Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et al, SC12

- Communication avoidance as old at tiling
- Communication optimality as old as Hong/Kung
- What's new?
 - -Raising the level of abstraction at which we optimize
 - -BLAS2 → BLAS3 → LU or SPMV/DOT → Krylov
 - -Changing numerics in non-trivial ways
 - -Rethinking methods to models
- Communication and synchronization avoidance
- Software engineering: breaking abstraction
- Compilers: inter-procedural optimizations

Yes, but when you're worrying about

- Scaling
- Synchronization,
- Dynamic system behavior
- Irregular algorithms
- Resilience

don't forget what's important

Location, Location, Location

