Performance-Portable Finite-element Computations
from High-level Specifications with FFC and PyOP2

Florian Rathgeber*, Graham R. Markall*, Lawrence Mitchell#, Nicolas Loriant*, David A. Ham*T, Carlo Bertolli®
and Paul H.J. Kelly*
* Department of Computing, Imperial College London, London SW7 2AZ, United Kingdom
{f.rathgeber, graham.markall08, n.loriant, david.ham, p.kelly } @imperial.ac.uk
1 Grantham Institute for Climate Change, Imperial College London, London SW7 2AZ, United Kingdom
YEPCC, The University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom - lawrence.mitchell@ed.ac.uk
$IBM T.J. Watson Research Center, NY, USA - cbertol@us.ibm.com

Abstract—We present a tool chain for the fully automated
synthesis of performance-portable finite-element solvers for mul-
ticore and GPGPU platforms from high-level specifications. Our
runtime code generation and just-in-time compilation pathway
takes finite-element forms in the domain-specific language UFL
to low-level code. Automatically generated finite-element assembly
kernels are passed to PyOP2, a domain-specific language for
mesh-based simulation codes, which acts as an intermediate
abstraction layer for executing the numerical kernels in parallel
over an unstructured mesh. Easy integration of our tool chain
allows transparently adding performance portability to existing
simulation codes.

PyOP2 [1], [2] is a Python implementation of the unstruc-
tured mesh computation framework OP2 [3], which applies
numerical kernels in parallel over an unstructured mesh. Ker-
nels and parallel loop invocation code are just-in-time (JIT)
compiled at runtime and cached. Subsequent parallel loops
using the same kernel do not incur additional compilation
overhead. PyOP2 delivers performance portability across a
range of hardware platforms: OpenMP, OpenCL and MPI on
multi-core CPUs and CUDA or OpenCL on GPGPU. Data
layout, mesh partitioning, traversal, parallel scheduling and
efficient execution of parallel loops are automatically managed.

We demonstrate the finite-element tool chain shown in
Figure 1, using the domain-specific Unified Form Language
UFL [4] and the form compiler FFC [5] from the FEniCS
project and PyOP2 as a suitable intermediate representation for
parallel kernel execution. Finite-element methods are widely
used to approximately solve partial differential equations on
unstructured domains. UFL allows the weak forms of PDEs to
be expressed in near-mathematical notation. The local assem-
bly operation executes the same kernel for every entity of the
mesh and is therefore a natural fit for the PyOP2 computation
model. We show how these kernels are generated automatically
from the weak form of an equation given in UFL. Global
assembly and linear solves are passed through to platform-
specific linear algebra backends integrated into PyOP2 through
a modular interface.

Using this tool chain, scientists can drive finite-element
computations from an input notation very close to the math-
ematical model and transparently benefit from performance-
portable parallel execution on their hardware architecture of
choice without requiring specialist knowledge in numerical
analysis or parallel programming.

[Unified Form Language (UFL)]

Problem definition in finite
element weak form

[FEniCS Form Compiler (FFC)]

Local assembly kernels and
data dependencies

[PyOP2 high-level interface (API)]

Parallel loops over kernels with
access descriptors

[runtime code generation/scheduling }
Explicitly parallel hardware-

CPU / 1 \\\ specific implementation
S ooencLy [Future arch.)
(+MPI+OpenMP/|| o ;niopenct) [Future arch.

OpenCL)

Fig. 1. Overview of the UFL/PyOP2 finite-element code synthesis tool chain

Automatic generation of low-level code facilitates rapid
development and allows generation of variants that support
optimized performance and explore alternative code generation
schemes. We plan to look at hybrid CPU/GPU execution,
improved communication overlap, intra-kernel vectorization
and warp-wide parallelization, and variants of local vs. global
assembly. The key in each case is to adapt the implementation
to the application context and the hardware capabilities.

REFERENCES

[1] F. Rathgeber, G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham,
C. Bertolli, and P. H. J. Kelly, “PyOP2: A High-Level Framework
for Performance-Portable Simulations on Unstructured Meshes,” in
WOLFHPC2012: Workshop on Languages for High-Performance Com-
puting at SC ’12, November 2012, in press.

[2] G. R. Markall, F. Rathgeber, L. Mitchell, N. Loriant, C. Bertolli,
D. A. Ham, and P. H. J. Kelly, “Performance portable finite element
assembly using PyOP2 and FEniCS,” in Proceedings of the International
Supercomputing Conference (ISC) ’13, ser. Lecture Notes in Computer
Science, vol. 7905, June 2013, in press.

[3] G. R. Mudalige, I. Reguly, M. B. Giles, C. Bertolli, and P. H. J. Kelly.,
“OP2: An Active Library Framework for Solving Unstructured Mesh-
based Applications on Multi-Core and Many-Core Architectures,” in
Innovative Parallel Computing conference (InPar ’12), 2012.

[4] M. S. Alnaes, A. Logg, K. B. Oelgaard, M. E. Rognes, and G. N.
Wells, “Unified form language: A domain-specific language for weak
formulations of partial differential equations,” arXiv, Nov. 2012.

[5] R. C. Kirby and A. Logg, “A compiler for variational forms,” ACM
Transactions on Mathematical Software, vol. 32, no. 3, pp. 417-444,
2006.

