
Sparse Tiling for Unstructured Mesh Applications in
the OP2 Framework

Fabio Luporini
Department of Computing
Imperial College London

London, UK
Email: f.luporini12@imperial.ac.uk

Paul H. J. Kelly
Department of Computing
Imperial College London

London, UK
Email: p.kelly@imperial.ac.uk

Carlo Bertolli
IBM TJ Watson Research

New York, USA
Email: cbertol@us.ibm.com

Abstract—Unstructured meshes are widely-used in scientific
computing for implementing numerical methods. In applications
based on such abstraction parallelism is well-exposed, but poten-
tial data reuse between different loops is, in general, lost. This
is mainly due to the presence of indirect memory accesses (like
A[B[i]]) that prevent many optimizations.

Sparse tiling is a well-known code transformation that aims
at obtaining data locality across different loops by scheduling
sets of iterations determined at run-time that share some blocks
of data. However, so far it has been ”manually” applied to
small benchmarks only. In this work we show our on-going
research into integrating sparse tiling with the OP2 framework
for unstructured mesh computations. Early experiments with the
Airfoil benchmark show that sparse tiling improves the run-time
performance of 20% for both the sequential and OpenMP ver-
sions. Evaluating sparse tiling in industrial applications supported
by OP2 is the ultimate goal.

I. SPARSE TILING IN THE OP2 FRAMEWORK FOR
UNSTRUCTURED MESH COMPUTATIONS

Unstructured mesh are widely-used in scientific computing for
implementing numerical methods like Finite Elements or Finite Vol-
ume. Applications based on unstructured meshes commonly require
long execution times, with intensive data access. They usually feature
sequences of loops that iterate on sets of mesh entities (e.g. edges,
cells) and share data through another set of mesh entities (typically
vertices). There are no constraints on the order with which iterations
of a loop need to be executed, so parallelism is always well exposed
(and exploited in real applications), but data locality across subsequent
loops is, in general, lost. This is mainly due to the presence of indirect
memory accesses (like A[B[i]]) that prevent many optimizations.
A solution to this problem is to use communication avoiding code
transformations, like sparse tiling [2], which aim at obtaining data
locality across different loops by scheduling sets of iterations deter-
mined at run-time that share some blocks of data. However, so far
they have been “manually” applied to small benchmarks only. In this
paper we present a general algorithm to automate sparse tiling in
a framework for unstructured mesh computations and evaluate it in
real-world applications.

The OP2 framework [1], which has been successfully used
for developing performance-critical, industrial applications, targets
computations based on unstructured meshes. In OP2 an unstructured
mesh can be constructed in terms of sets, relationships between sets
and datasets. A programming construct called op par loop is used
to modify datasets by applying a function to all elements of a set.
As an example, a loop over a set of edges can modify the weight of
an edge by reading (through indirect memory accesses) values from
the adjacent vertices, for each element in the set. According to the
execution model of an OP2 parallel loop, iterations can be carried

out in any order and/or completely in parallel. Data dependencies
between iterations of the same loop are handled by the OP2 run-time
support, through techniques that prevent data races. OP2 applications,
therefore, are composed of “chains” of parallel loops that work on
mesh entities.

The difficulty of sparse tiling in unstructured mesh applications
comes from the presence of indirect memory accesses. Tiling a
chain of op par loops means that instead of executing successive
loops in a serial way (i.e. one after the other), tiles are suitably
created including iterations from different loops. This implies that
the implementation of a chain of loops schedules tiles, rather than
iterations of a loop for each loop in the chain. Compared to a
simpler execution model, in which an implicit global synchronization
is present between successive parallel loops, this approach enables
data reuse inside a tile.

The sparse tiling algorithm belongs to the class of Inspec-
tor/Executor strategies. At run-time, the “inspector” code starts by
partitioning a set over which the loops in the chain share data. A
partial ordering of partitions can be defined by colouring them (or
“assigning a priority”) in such a way that adjacent partitions are
assigned different colours. At this point, each tile (or partition) is
expanded by adding elements from the iteration set of each loop
in the chain. The correctness of the computation is preserved by
ensuring that a tile executes a particular element (e.g. vertex, edge,
cell) only if all of its adjacent base set elements are already updated.
This is achieved by taking advantage of the colour ordering. It is
worth noticing that the sparse tiling algorithm is simplified by the
inherent OP2 programming model. Nevertheless, it can be suitably
modified to be used in more general contexts.

Early experiments with the OP2 Airfoil application, which were
executed on different multi-core CPUs, show that sparse tiling im-
proves the run-time performance of 20% in both the sequential and
OpenMP versions. Evaluating sparse tiling in industrial applications
supported by OP2 is the ultimate goal.

REFERENCES

[1] M.B. Giles, G.R. Mudalige, Z. Sharif, G. Markall, and P.H.J. Kelly.
Performance analysis and optimization of the op2 framework on many-
core architectures. Comput. J., 55(2):168–180, February 2012.

[2] Michelle Mills Strout, Larry Carter, Jeanne Ferrante, and Barbara
Kreaseck. Sparse tiling for stationary iterative methods. INTERNA-
TIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLI-
CATIONS, 18(1):2004, 2004.


