
Compilation of Structured Polyhedral Equations
Yun Zou, Guillaume Iooss, and Sanjay Rajopadhye

Computer Science Department
Colorado State University, Ft. Collins, CO

zou_yun@yahoo.com, guillaume.iooss@gmail.com, Sanjay.Rajopadhye@colostate.edu

Abstract—The polyhedral model is an established mathemat-
ical formalism for automatic parallelization of an important
class of programs. In 1989, Mauras defined ALPHA, a poly-
hedral equational language based on systems of affine recur-
rence equations over polyhedral domains. In 1995, Dupont de
Dinechin introduced subsystems in ALPHA to allow modularity
and structured programming. Such hierarchical structure is now
regaining importance when polyhedral programs are tiled with
parametric tile sizes. Such tiling transformations are non-linear,
and render the program representation “out of the scope” of
polyhedral representation. Current approaches apply them at
the final, code-generation step. Structured polyhedral programs
offer an alternative solution, the ability to work with a polyhedral
specification of programs with parametric tile sizes. This paper
addresses the issue of code generation and compilation of
such structured ALPHA programs. We implement this in our
polyhedral transformation framework (AlphaZ). We also give
examples to illustrate the ability to express the complex programs
and to demonstrate the code generation.

I. INTRODUCTION

The polyhedral model is a powerful framework for auto-
matic parallelization and program optimization. It provides a
mathematical abstraction to reason about a class of imperative
programs, called affine control loop programs (the inaccurate
term SCoP or static control parts is popular, but incorrect—
an FFT program has static but non-affine control, and cannot
be analyzed by polyhedral methods). It enables instance-wise
analysis of statements in a program (since statements may be
surrounded by loops and therefore have multiple instances)
and element-wise analysis of arrays (rather than treating all
arrays as single monolithic entities). However, underlying the
program model is a declarative formalism called systems of
affine recurrence equations.

ALPHA [1] is a strongly typed, functional polyhedral lan-
guage, originally defined by Mauras [1] in 1989, and extended
by Le Verge [2] to include reductions as first class expressions.
ALPHAZ [3] is a tool developed at CSU that allows the manip-
ulation, analysis and transformation of the ALPHA programs.
It is similar in structure to an earlier tool MMALPHA [4]
developed at IRISA, Rennes, France. MMALPHA targeted
VLSI processor arrays and generated code in the form of a
hardware description language, while ALPHAZ targets modern
multi- and many-core processors, and generates parallel code
(C+OpenMP and C+MPI).

One key limitation of MMALPHA was that it did not
handle tiling, which was then, and still is, a difficult problem.
However, tiling is a critical program transformation and is

used extensively to address different aspects of performance,
ranging from data locality to granularity of parallelism, and
control of communication-computation balance. Parametric
tiling—tiling when tile sizes are parameters to be instanti-
ated later in the compilation process, or even at run time—
is a known limitation of polyhedral model.1 Most current
polyhedral tools do not handle parametric tiling cleanly. The
fundamental difficulty is that tiling with parametric tile sizes is
a non-linear transformation, and therefore violates the closure
properties necessary for program transformations. As a result,
the “workaround” to the problem is to do parametric tiling
only at the final, code-generation step when there is no need
for further polyhedral analyses and transformations. All the
state-of-the-art polyhedral tools adopt this strategy [5], [3] or
limit themselves to fixed size tiling [6], [7], [8].

However, this is not very satisfactory, since the representa-
tion of a tiled program is no longer polyhedral, and therefore
cannot be subject to further polyhedral transformation or
analysis. For example, the output produced by most current
polyhedral compilers cannot be fed back directly into a poly-
hedral compilation/optimization system.

One alternative is to perform the necessary non-linear trans-
formations before any polyhedral analysis and transformations,
and work with a purely polyhedral representation. At the
expense of an initial, possibly human-guided, and non-obvious
preprocessing, one has a polyhedral representation throughout
the transformation and code generation process. This motivates
the need for tools and systems to manipulate hierarchical
polyhedral programs—polyhedral programs in which tiling has
been performed at the source/algorithmic level.

In 1995, Dupont de Dinechin [9], [10] argued for the need
to include modularity in ALPHA, and proposed the notion
of subsystems in the language. He provided a semantics for
such programs and presented a number of basic analyses
and transformations. The use of subsystems was limited to
structural description of regular hardware in MMALPHA,
notably in the AlpHard language [11]. The need for tiling,
and in particular, the idea of performing tiling as a first, non-
linear preprocessing transformation, motivates us to revisit
subsystems in ALPHA, and is the topic of the current paper.
Our main contributions are as follows:
• We revisit the definition and foundations of subsystems

1When tile sizes a compile-time constants, tiling can be described as an
affine transformation and can be handled within the polyhedral model.

Expression Syntax Domain Comment

Constant Constant symbol Z0

Variable Variable name X DX Declared domain

Operator op(Exp1, ..., ExpM)
M⋂
i=1

DExpi
infix syntax too

Case case Exp1; ...; ExpM esac
M⊎
i=1

DExpi
disjoint union

Restriction D : Exp D ∩DExp relational inverse

Dependence f@Exp f−1(DExp)

Reduction reduce(⊕, f, Expr) f(DExpr)

Fig. 1. ALPHA expressions and computation rules for the associated domains. A case expression describes a conditional expression defined over disjoint
domains. A restriction expression just restricts the definition domain of its sub-expression. The value of a dependence expression f@Expr at an index point
~i is the value of Expr at the point f(~i). In the case where the sub-expression is a variable X , the value of f@X at the point ~i can be written as either
(f@X)[~i] or X[f(~i)]. A reduction expression corresponds to an accumulation with the operator ⊕. The values of Expr at all points that are mapped by f
to the same index point i are accumulated together, using the associative and commutative operator ⊕.

in ALPHA as proposed by Dupont de Dinechin [9], [10]
and propose new static analyses and transformations. In
particular, we extend a critical program transformation
called Change-of-Basis to operate on ALPHA programs
with subsystems. We also implement in ALPHAZ, some
known transformations and analysis that were not previ-
ously implemented in MMALPHA.

• We describe a methodology for compiling ALPHA pro-
grams with subsystems to parallel, shared memory code
(sequential code is a special case) in OpenMP, and
implement a code generator embodying this methodology.
Besides the correctness of the generated code, our code
generator is able to generate code incorporating a number
of optimizations such as memory reuse and value reuse.

II. BACKGROUND

In this section, we briefly introduce ALPHA2, including
Dupont de Dinechin’s extension to subsystems.

A. The ALPHA Language

An ALPHA program is a collection of affine systems, each
affine system consists of:
• A parameter domain, which is a polyhedral domain that

specifies the constraints on the program parameters.
• A list of declarations of input/output/local variables Var,

each associated with a polyhedral domain DVar.
• A list of equations Var = Expr. There is exactly one

equation for each local or output variable. The syntax of
expressions is given in Fig 1.

The analysis phase computes two domains for each sub-
expression:

2A detailed presentation of the formalism can be found in [12]

• Expression domain, which is the set of points in which
the expression is defined.

• Context domain, which is a subset of the expression
domain, and is the set of points at which the expression
needs to be evaluated, in order to compute the outputs of
the system.

The expression domain is computed recursively, in a bottom-
up fashion, using the rules in the last column of Fig 1. The
context domain is computed in a top-down fashion.

Example: Consider the equation A.x = b where A is a
lower triangular matrix whose diagonal values are 1 and x, b
are vectors. Given A and b, forward substitution solves this

equation for x using the formula, xi = bi −
i−1∑
j=0

Ai,jxj , with

appropriate boundary cases. An ALPHA program is shown in
Fig 2.

B. Subsystems

Dupont de Dinechin [9], [10] introduced the notion of
modularity in ALPHA. A subsystem is an affine system which
is “called” or invoked from another system on a specific
set of parameters and inputs values. Indeed, a “polyhedral
collection” of systems may be invoked in a compact manner.
Fig 3 shows a modular version of the forward substitution
example above, where each instance of the reduction is written
as the invocation of a dot-product subsystem.

The equation describing this system call is called a use
equation and has the following syntax:

use Dext s[p] (i) (o);

where:
• Dext is the [optional] extension domain.
• s is the name of the subsystem called.

× =

A x b

affine FS {N | N>0 } // System name & parameter domain
input // List of input variables

float A {i,j | 0<=j<i<N};
float b { i | 0<=i<N };

output // List of output variables
float x { i | 0<=i<N };

let // List of equations
x[i] =

case
{i| i == 0}: b[i];
{i| i > 0 }: b[i] - reduce(+, (i->), A[i,j]*x[j]);
esac;

.
Fig. 2. Forward substitution in ALPHA: a program to solve Ax = b for a unit lower triangular matrix, A.

affine FSwithDotProd {N| N> 0}
input

float A {i,j | 0<=j<i<N};
float b {i | 0<=i<N};

output
float x {i | 0<=i<N};

local
float temp {i | 1<=i<N};

let
use {i|1<=i<N} // instantiate a 1-D set, indexed by i

dotProd[i-1] // of dotProd, where the i-th instance
// has size parameter i-1.

// with the following input and output arguments:
(A, (i,j->j)@x) returns (temp);

x = case
{i| i == 0}: b;
{i| i > 0 }: b - temp;

esac;
.

Fig. 3. Forward substitution in ALPHA with subsystems

• p is a list of affine index expressions specifying size
parameters of the instances.

• i is a list of the input expressions.
• o is a list of the output variables.

Let us first consider the particular case where the extension
is not specified in the use equation. This equation is calling the
affine system s with the parameter values p and the inputs i.
The outputs of the subsystem define the values of the variable
o. And the index expressions of p are affine expressions of
the parameters. In addition, because no extension domain was
specified, we only have a single call to the subsystem.

The extension domain allow us to express a parametric
number of calls to the subsystem s, each points ~iExt of the
extension domain corresponding to an instance of subsystem
call. For the~Extth call, the input values sent are the values
of the input expressions i, whose first few dimensions are set
to ~iExt. The output values produced by this subsystem call
define the values of o whose few first dimensions are ~iExt.
It is also possible to give distinct parameter values to each
subsystem call using index names of ~iExt.

III. STATIC ANALYSIS OF SUBSYSTEMS

We first present our adaptation of the context domain com-
putation to subsystems. Then we describe the Change-of-basis
transformation on use equations and explain how to extend a

data structure called the polyhedral reduced dependence graph
(PRDG) to use equations.

A. Context domain for the input expressions of a use equation

For a standard ALPHA equation Var = Expr, the context
domain of Expr is exactly the definition domain of Var.
Then, we recursively compute the context domain of each
subexpression of Expr. However, the input expressions of
a use equation are not included inside any standard ALPHA
equation, and therefore we need to introduce new rules to
handle this.

Dupont de Dinechin introduced an inlining transformation
for subsystem [9, Section 4.5]. This inlining transformation
creates a new local variable in the main system for each
input/output variable of the inlined subsystem, and all the
equations in the subsystem is copied into the main system
with these new variables. Moreover, every domain or function
from the subsystem is modified, to account for the extension
domain and the parameter changes. Also, a copy equation is
added for every input of the subsystem, and has the form
Varin= Expr, for the input equations.

To determine the set of points of an input expression which
will be used by a subsystem, we can translate the domain
of the corresponding input variable in the subsystem, using
the transformation introduced by Dupont de Dinechin for his
inlining transformation. This is equivalent to consider the
corresponding input copy equation, then apply the context
domain computation on this standard equation.

B. Change of Basis on a use equation

The Change of Basis (CoB) is a very useful transformation
which subsumes many others (such as loop skewing, inter-
changing) in a single formalism. It consists of transforming
the domain DV ar of a variable into f(DV ar), where f is a
bijective affine function. This transformation impacts the affine
system in the following way.
• The equation Var = Expr is transformed into
Var = f−1@Expr

• Each occurrence of Var is replaced by f@Var

The CoB transformation cannot be applied directly to an
output variable Varout of a use equation. Indeed, if f touches
the dimensions of the extension domain, it modifies the

domains of all the outputs of the use equation. The ALPHAZ
system returns an error and advices the user to introduce a
copy variable. However, the user can force the transformation,
in this case, we perform the same CoB to every output variable
of the use equation.

It is also possible to apply a CoB directly on a use equation:
the idea is to transform its extension domain Dext into f(Dext)
where f is bijective. This transformation will impact the affine
system in the following ways:

• The extension domain Dext is replaced by f(Dext)
• Each input expression Expr is replaced by (f−1 ×

Idk)@Expr where k is the dimension of the input of
the subsystem.

• We perform partially a CoB on each output variable,
using the function (f × Idk′) where k′ is the dimension
of the output of the subsystem.

This transformation is used to permutate or skew a loop nest,
to enable other transformations (such as tiling) or to expose
parallelism.

C. Outlining transformation

The outlining transformation consists of extracting a set
of equations from a main system, and creating a subsystem
from them. The input variables of this new subsystem are the
variables used in these equations and defined elsewhere. The
output variables are the variables defined in these equations
and used elsewhere. The local variables are the variables de-
fined in these equations and used only inside these equations.

Our current version is simple: the use equation do not
have any extension domain, and input expressions to the use
equation can be specified by the user. Eventually, we will allow
the user to define an extension domain, which will impact the
domain of the variables of the subsystem and the use equation
created.

D. Polyhedral Reduced Dependence Graph

To analyze statically the dependencies of a program, we
have to create a Polyhedral Reduced Dependence Graph
(PRDG). The nodes in a PRDG are the variables of a program.
There is an edge between from node a (source) to node b
(destination) if the computation for variable a depends on
variable b. The nodes and edges are labeled respectively by
the domain of the variable and the dependence function.

We chose to represent a use equation in a PRDG in the
following way:

• A new node is created for each input expression
• The use equation is represented by an hyper-edge, whose

sources are the previously created nodes for input ex-
pressions, and destinations are the nodes for the output
variables.

Moreover, we label the hyper-edge by the name of the
subsystem called, the parameters and the extension domain
of the use equation.

Input
expressions Outputs

parameters
Dext

subsyst

IV. CODE GENERATION

Code generation is an important component in ALPHAZ,
and several code generators are available [3]. The most so-
phisticated one ScheduledC, generates C+OpenMP code. We
extended this code generator to support code generation for
subsystems. In this section, we will describe the strategy for
the code generator and illustrate how to use it to generate
efficient code.

In ALPHAZ, compilation is based on three orthogonal
components.
• First, a target mapping specifies, for each variable in the

ALPHA program, all the aspects of the desired paralleliza-
tion. This includes the schedule, the memory allocation,
and tiling—which dimensions to tile, how many levels of
tiling, and the tile sizes at each level.

• Next, a verifier checks the legality of the proposed map-
ping (this is because the target mapping may optionally
be specified interactively by the user).

• Finally, a code generator in the form of a very sophisti-
cated “pretty printer” based on CLooG [13] that actually
produces the target code.

The choice of the target mapping is a long standing re-
search problem, since the target architectures are continually
evolving. Therefore ALPHAZ provides the ability for users to
explore these choices manually.

A. Target Mapping

The main components of the target mapping are space-
time map and memory map. The space-time map has two
components, a schedule and a processor allocation, thus it
determines when and on which virtual processor the com-
putation should be executed. A space-time map is specified
for each variable, and is a bijective multi-dimensional affine
function [14], each dimension can be sequential, parallel or
tagged as an “ordering” dimension. For example, we can give
a space-time map (i→ i, 0) to the equation x in the forward
substitution example. This tells the code generator that the
statement generated for the ith index of x is to be computed
at time step (i, 0), and the second dimension is an ordering
dimension. The memory map, represents, for every variable
in the program, its memory allocation, and is also specified
by a multi-dimensional affine function, possibly annotated
with modulo functions. For example, we can set the memory
map for the variable temp in the forward substitution to be
(i, j → i), which means the 〈i, j〉th value is stored at the
memory location i.

To generate codes with parallelized C loops, the target
mapping also needs to have additional information. The par-
allelization specification tells the code generator which loops
are to be annotated with pragma omp parallel. Since
specific loops may not correspond directy to the dimensions

of an index, and so, this is specified as the nth dimension with
a certain ordering prefix in the space-time map. For example,
given the space-time map (i → i, 0) for statement x, we
can parallelize the i dimension with the specification: the first
dimension with empty ordering prefix.

In compiling ALPHA programs with subsystems, the main
assumption is that instances of subsystems are atomic, i.e.,
they can be executed with the following protocol: first evaluate
(and collect) all the inputs to (an instance of) the subsystem,
then evaluate all the local and output variables of that instance,
and finally, retrieve the outputs and continue execution of other
computations in the main system. Atomicity can be verified
by a simple extensions to the algorithm that determines the
subsystem schedules [15].

B. Strategy

We now describe our strategy for subsystem code genera-
tion, and the necessary extensions to target mapping.

Because of atomicity of subsystems, we can implement
them as function calls in C. Where the function call statement
is placed is decided by the space-time maps in target mapping.
A space-time map is specified for every use equation and its
left hand side has the same number of dimensions as Dext.

In order to implement function calls, the key problem is
how to pass the correct values as inputs or store the outputs
into the correct place. Simply passing some pointer of the
existing variable is incorrect for two reasons. First, the inputs
of subsystems can be an expression and not necessarily a
variable, so there may not be any memory allocated for it in
the calling system. Second, the set of indices corresponding to
an instance of a subsystem may be an arbitrary “slice” of the
context domain of the expression, and hence, the appropriate
set of values needs to be marshaled together into a contiguous
region of memory.

Figure 4 shows the matrix multiplication using a
dot_product subsystem: the 〈i, j〉th value of the final
matrix C is computed by a dot product of the ith row of matrix
A and the jth column of matrix B by the 〈i, j〉th instance of
the use. Although tiling is not addressed in this example, it is a
simple example to illustrate the code generation strategy and
possible optimizations. Later, we will show more examples
where tiling is used.

For this program, if both matrix A and B are allocated in the
standard row-major manner, the ith row of A can be passed
as &A[i], but the columns of B are not in contiguous memory
locations, but that is how a dot-product function expects its
arguments. To generate correct codes, a temporary variable is
created for every input/output of each use equation, that has
the same memory size and allocation as the declared domains
of the subsystem input/output, and corresponding values are
copied to/from these variables before/after the function call.

To achieve this, our code generator generates three auxiliary
statements for each input/output of each use equation: a
memory allocation statement for each temporary variable,
a set of value copy statements for the inputs and outputs,
and the memory free statements for the temporary variables.

// Product of rectangular matrices A and B
affine matrix_product_SubSyst

{N,K,M | N>0 && K>0 && M > 0}
input

float A {i,k | 0<=i<N && 0<=k<K};
float B {k,j | 0<=k<K && 0<=j<M};

output
float C {i,j | 0<=i<N && 0<=j<M};

let
use {iP,jP|0<=iP<N && 0<=jP<M}

dot_product[K]
((pi,pj,k->pi,k)@A,
(pi,pj,k->k,pj)@B)

returns (C);
.

Fig. 4. Matrix multiplication using dot product subsystem

//declare temporary variables
long* UseEquation_C_input_0;
long* UseEquation_C_input_1;
long UseEquation_C_output_0;

#pragma omp parallel for private(j)
for(i = 0; i <= N-1; i++){
#pragma omp parallel for
for(j = 0; j <= M-1; j++){
//allocate memory for the inputs
UseEquation_C_input_0 =

memory_allocation_for_UseEquation_C_input_0(K);
UseEquation_C_input_1 =

memory_allocation_for_UseEquation_C_input_1(K);

//value copy statements for inputs
value_copy_for_UseEquation_C_input_0(K, i, j, A,

UseEquation_C_input_0);
value_copy_for_UseEquation_C_input_1(K, i, j, B,

UseEquation_C_input_1);

//function call
dot_product(K,UseEquation_C_input_0, UseEquation_C_input_1,

&UseEquation_C_output_0);

//value copy statements for outputs
value_copy_for_UseEquation_C_output_0(K, i, j, C,

&UseEquation_C_output_0);

free(UseEquation_C_input_0);
free(UseEquation_C_input_1);
}

}

Fig. 5. The generated code for the matrix multiplication

Figure 5 shows the code that is generated for the system
matrix product SubSyst. Both of the loops in this example
have been specified as parallel. Since parallelism ijut a simple
annotation as far as the code generator is concerned, the
remaining examples focus on sequential code.

By default, the temporary variables and special statements
are created for every instance of the subsystem call, since the
memory size and values that are needed for every subsystem
instance may be different (e.g. in the forward substitution
example of Figure 3, the i-th instance of the dotproduct
system operates on vectors of length i − 1). However, in
other cases, reuse may be possible. For example, in the matrix

//declare temporary variable
long* UseEquation_C_input_0;
long* UseEquation_C_input_1;
long UseEquation_C_output_0;

//allocate memory for the inputs
UseEquation_C_input_0 = memory_allocation_for_UseEquation_C_input_0(K);
UseEquation_C_input_1 = memory_allocation_for_UseEquation_C_input_1(K);
for(i = 0; i <= N-1; i++){
value_copy_for_UseEquation_C_input_0(K,i,j,A,UseEquation_C_input_0);

for(j = 0; j <= M-1; j++){
//value copy statements for inputs
value_copy_for_UseEquation_C_input_1(K,i,j,B,UseEquation_C_input_1);

//function call
dot_product(K,UseEquation_C_input_0, UseEquation_C_input_1,

&UseEquation_C_output_0);

//value copy statements for outputs
value_copy_for_UseEquation_C_output_0(K,i,j,C, &UseEquation_C_output_0);

}
}

//memory free
free(UseEquation_C_input_0);
free(UseEquation_C_input_1);

Fig. 6. The generated code for the matrix multiplication with memory and value reuse

multiplication example, the temporary variable size for both
inputs are the same across all the subsystem calls. Therefore,
the same memory allocation can be shared across all the
subsystem calls for each input. In other words, the memory
allocation statement can be hoisted out of the whole loop nest
for the subsystem call. Furthermore, all the jth instances of
the subsystem call use the same value for the first input, so
the value copy statement for the first input can also be hoisted
out the inner j loop.

Sophisticated polyhedral analysis can be used to determine
such optimizations, but as far as th code generator is con-
cerned, they are eventually specified as space-time maps for
the three auxiliary statements. For the matrix multiplication
example, we set the space-time map of the allocation state-
ments for both inputs to be (ip, jp → 0, 0, 0, 0, 0), (note that
the first, third and fifth dimensions are ordering dimensions).
In order to hoist this statement out of the i and j loops, we
simply also set the second and fourth dimensions to zero.
In general, for any statement that needs to be hoisted out k
levels of a m-nested loop, we just need to set the values of
its space-time map that correspond to the innermost k loop
dimensions to be zero. Conversely, given a space-time map
of an auxiliary statement, we can figure out the value k by
counting the number of successive innermost loops with a zero
value.

For the matrix multiplication example, we can completely
hoist the memory allocation statements for both inputs, and
the value copy statement for the first input by one level (the
copy of the i-th row of A is reused across the inner j loop).
The code generated with these three optimizations is shown
in Figure 6.

C. Legality check for target mapping

Our code generator accepts the target mapping as gospel
and generates code that respects the given mapping. A separate
module in the system There is responsible for ensuring that the
proposed target mapping is legal. For code generated without
subsystems, this legality check is performed using existing
polyhedral analyses [16]. We now explain how these need
to be extended to handle the legality of target mappings for
subsystems. Due to the space limitations, we only describe the
legality checks for the sequential case.

In addition to the legality of the susbystem schedule in-
cluding the test of atomicity, two additional checks need to be
performed for the target mapping validation for subsystems:
dependency check and reuse check. The dependency check
validates whether the space-time map correctly specifies the
loop hoisting optimization and whether all the dependencies
in the program are respected. The reuse check checks whether
the memory allocation and copy respect the lifetimes of the

values concerned. The dependency check has the following
components:

1) By default, the special statements for the inputs/outputs
of a subsystem are placed within the same loop with
the subsystem call (as shown in Figure 5). This requires
the space-time map for the special statements to have
the same linear part as the space-time map for the
use equation. Assume the space-time map for a special
statement is Θs, the schedule for the use equation is
Θuse, and lin(Θ) represents the linear part of the space-
time map, then we have to check lin(Θs) = lin(Θuse).
When a special statement is hoisted out, the special
statement should still share a common loop prefix with
the subsystem call. Assume that the statement is hoisted
out by k levels, and there are m loops. Then we have to
check k ≤ m, and that the first (m− k) dimensions of
lin(Θs)are the same as the lin(Θuse), and the remaining
k dimensions are set to zero.

2) The dependencies between the special statements and
the subsystem call have to be respected (these de-
pendencies are in addition to those that were in the
original program). For example, the memory has to be
allocated before any value is assigned, therefore, the
value copy statement must happen after the malloc state-
ment. Let Θmalloc

inputi
, Θcopy

inputi
, Θfree

inputi
be the schedule for

the memory allocation statement, value copy statement
and memory free statement of the ith input. Similarly,
we also have Θmalloc

outputi , Θcopy
outputi , Θfree

outputi for the ith
output. Then the check we have to do is to ensure that
∀z ∈ Dext,

Θmalloc
inputi (z) ≺ Θcopy

inputi
(z) ≺ Θuse(z) ≺ Θfree

inputi
(z)

Θmalloc
outputi(z) ≺ Θcopy

outputi(z) ≺ Θfree
outputi(z)

Θuse(z) ≺ Θcopy
outputi(z)

3) All other dependences in the program have to be re-
spected by the space-time maps, and this is exactly what
the ALPHAZ verifier already does for programs without
subsystems [16]. In adition, the space-time map must be
checked for atomicity of subsystems.

The reuse check checks whether the memory reuse and
value reuse is legal. The zth instance of the subsystem call
can share the same memory allocation statement with the z′th
instance of the subsystem call for the ith input/output, if and
only if the memory size for the ith input is the same for the
two instances of the subsystem. When the memory allocation
statement is hoisted out the m-nested loops for k levels, the
subsystem calls with the common first (m−k) indices all must
have the same memory size for the ith input. Therefore, the
vertices of domain for the ith input of the subsystem should
not depend on any of the inner k loop indices. This is a simple
check using existing polyhedral machinery.

For the value reuse, the zth instance of the subsystem call
can share the same value copy statement with the z′th instance
of the subsystem call for the ith input, if and only if the values

affine BlockMM {n, b| (n,b)>0}
given

float A, B {ii,jj,i,j |
0<= (ii,jj)<n && 0<=(i,j)<b};

returns
float C {ii,jj,i,j |

0<= (ii,jj)<n && 0<=(i,j)<b};
using

float CC {ii,jj,kk,i,j |
0<= (ii,jj,kk)<n && 0<=(i,j)<b};

through
use {ii, jj, kk | 0<=(ii,jj,kk)<n}

MatrixMult[b]
((ii,jj,kk,i,j->ii,kk,i,j)@A,
(ii,jj,kk,i,j->kk,jj,i,j)@B)
returns (CC);

C = reduce(+,
(ii,jj,kk,i,j->ii,jj,i,j), CC);

.

Fig. 7. The ALPHA program for tiled matrix multiplication

needed by both instances are the same. A value copy statement
can be hoisted out the innermost k loops if it has a reuse along
the direction defined by [0, 1k], the vector which is 1 in the
innermost k dimensions and 0 in the outer ones. Again, we
can use known polyhedral machinery [17] to perform these
checks.

V. RESULTS

So far, we used simple examples to illustrate subsystems and
our compilation strategy. Now, we demonstrate how to write
structured tiled ALPHA code for the tiled forward substitution
and tiled matrix multiplication, and also show the sample
codes we generated with different optimization.

A. Tiled Matrix Multiplication

1) Alpha program for tiled matrix multiplication: In matrix
multiplication, tiling can be applied to explore a better data
locality when the size of the matrix is too large to fit into
the cache. Such a tiled program is shown in Figure 7, whose
matrix size and block size are squares.

2) Generated code for tiled matrix multiplication: For the
tiled matrix multiplication program, the memory size used
for each input/output for all subsystem calls are the same.
Therefore, all the subsystem calls can share the same memory
allocation for each input/output, i.e., the malloc statements
can be hoisted out all the way. Also, the accumulation for the
final answer C can happen right after each of the kkth blocks
is computed—the reduction is interspersed with the function
calls. The generated with all these optimization is shown in
Figure 8.

B. Tiled Forward Substitution

1) Alpha program for tiled forward substitution: The for-
wad substitution program can also be blocked into square tiles

//declare temporary variables
float** UseEquation_CC_input_0;
. . . //other temporary variables

//memory allocation for the temporary variables
UseEquation_CC_input_0 =

memory_allocation_for_UseEquation_CC_input_0(n,b,...);
. . . //memory allocation for other temporary variables
for(i=0;i <= n-1;i+=1){
for(j=0;j <= n-1;j+=1){
for(k=0;k <= n-1;k+=1){
//copy corresponding values into temp input variables
value_copy_for_UseEquation_CC_input_0(n,b,...);
value_copy_for_UseEquation_CC_input_1(n,b,...);

//subsystem call
MatrixMult(b,UseEquation_CC_input_0,...);

//copy corresponding values into temp output variables
value_copy_for_UseEquation_CC_output_0(n,b,...);
}
//compute the answer for the <i,j>th block of C
for(k=0;k <= n-1;k+=1){
for(l=0;l <= n-1;l+=1){

C(i,j) = reduction(CC,...);
}

}
}

}
//memory free for the temporary variables
memory_free_for_UseEquation_CC_input_0(n,b,...);
. . . //memory free for other temporary variables

Fig. 8. The parallelized tiled matrix multiplication

(the diagonal blocks will be triangular) tiles The corresponding
program is shown in Figure 9.

2) Generated code for forward substitution: To generate
efficient code for the forward substitution, we have to discover
the reuse first. There are two use equations in the system
FSBlock, one for a smalles forward substitution system, and
the other for a matrix-vector product. In both use equation,
the mallocs for inputs and outputs can be hoisted completely.
No value reuse can be enabled for the forward substitution.
The code generated is shown in Figure 10.

VI. RELATED WORK

The polyhedral model has recently achieved a significant
success in automatic parallelization.3 It is currently used
in research compilers like Loopo [18], Pluto [6] (see
http://www.cse.ohio-state.edu/˜bondhugu/pluto)
and the PoCC tools of the Alchemy group in INRIA,
Saclay [5]. More importantly, the polyhedral model is now
included in at least three production compilers. IBM’s XL
compiler family now adopts this model as the intermediate
representation for loops; the 4.4.0 release of gcc now
includes this as part of the GRAPHITE project; and Reservoir
Labs also uses it in their compilation engine [8].

ALPHA [1] is a strongly typed functional language devel-
oped by Mauras at IRISA, and extended by Le Verge to include
reductions as first class expressions [2], and by Dupont de
Dinechin [9], [10] with modular structure. This abstraction
has allowed us to develop extremely powerful analyses and
transformations such as memory re-allocation [3], detection

3Pingali’s keynote at the 2010 LCPC Workshop listed the polyhedral model
as one of just three “successes” of compilers in the past 25 years.

affine FSBlock {N, B | (N,B) >1}
given
float LL {ii, jj, i, j | 0<=jj<ii<N && 0<= (i,j)<B};
float DD {ii, i, j | 0<=ii<N && 0<=j<=i < B};
float BB {ii, i | 0<=ii<N && 0<=i<B};
returns
float XX {ii, i | 0<=ii<N && 0<=i<B};
using
float AccVec {ii, jj, i | 0<=jj<ii<N && 0<=i<B};
float AccSum {ii, i | 0< ii<N && 0<=i<B};
float sum {ii,i | 0<= ii<N && 0<=i<B};
through

use{ii,jj|0<=jj<ii<N} blockMVM[B] (LL,(ii,jj,j->jj,j)@XX)
returns (AccVec);

use {ii | 0<=ii<N} diagSolve[B] (DD,BB-sum) returns (XX);
sum[ii,i] = case
{|ii==0}: 0;
{|ii > 0}: AccSum[ii,i];
esac;
AccSum = reduce(+, (ii,jj,i -> ii,i), AccVec);

.

affine blockMVM {B| B>0}
... // declarations omited for brevity

through
y[i] = reduce(+, [j], A[i,j]*x[j]);

.

affine diagSolve {B | B>0}
... // declarations omited for brevity

through
X[i] = case
{|i==0} :b[i]/L[i,i];
{|i>0} : (b[i] - reduce(+, [j],

{|j<i}:L[i,j]*X[j])) / L[i,i];
esac;

.

Fig. 9. Alpha code for the tiled forward substitution

//declare temporary variables
float** UseEquation_AccVec_input_0;
. . . . //other temporary variables

//memory allocation for temporary variables
UseEquation_AccVec_input_0 =
memory_allocation_for_UseEquation_AccVec_input_0(N,B,ii,...);
. . . .

for(i=0;i <= B-1;i+=1){
sum(0,i) = 0;

}
value_copy_for_UseEquation_XX_input_0(N,B,ii,...);
value_copy_for_UseEquation_XX_input_1(N,B,ii,...);
diagSolve(B,UseEquation_XX_input_0,...);
value_copy_for_UseEquation_XX_output_0(N,B,ii,...);
for(i=1; i <= N-1; i+=1){
for(j=0; j <= i-1; j+=1){
value_copy_for_UseEquation_AccVec_input_0(N,B,ii,...);
value_copy_for_UseEquation_AccVec_input_1(N,B,ii,...);
blockMVM(B,UseEquation_AccVec_input_0,...);
value_copy_for_UseEquation_AccVec_output_0(N,B,ii,...);

}
for(j=0;j <= B-1; j+=1){
AccSum(i,i3) = reduce_FSBlock_AccSum_1(N,B,i,...);
sum(i,j) = AccSum(i,j);

}
value_copy_for_UseEquation_XX_input_0(N,B,ii,...);
value_copy_for_UseEquation_XX_input_1(N,B,ii,...);
diagSolve(B,UseEquation_XX_input_0,...);
value_copy_for_UseEquation_XX_output_0(N,B,ii,...);

}

//memory free
memory_free_for_UseEquation_AccVec_input_0(N,B,ii,...);
. . . .

Fig. 10. Generated code for the forward substitution with memory reuse

and parallelization of scans and reductions [19] using the
algebraic/mathematical properties of semi-ring matrices.

After Dupont de Dinechin’s original work, there was rel-
atively little effort to exploit modularity in ALPHA, partly
because the MMALPHA tool did not support automatic tiling,
which was at that time an unsolved. It is only with recent
work on parametric tiled code generation [20] that modularity
in polyhedral equational languages becomes important.

VII. CONCLUSION

The importance of tiling as a program optimization, and
the fact that it is in general, a non-linear transformation poses
some unique challenges to polyhedral compilation techniques.
An approach to overcoming these difficulties is to pre-process
to the program so that tiling is performed initially, at the
specification level. In the polyhedral equational language,
ALPHA, subsystems as introduced by Dupont de Dinechin [9],
[10] provide us a very natural way of describing such tiled
specifications. In this paper, we first presented some new
static analyses and transformations for subsystems. We also
implemented a code generator that handles subsystems. It
generates code with memory and value reuse. The current
system requires manual specification of the target mapping
although our ongoing work is on automating this.

REFERENCES

[1] C. Mauras, “ALPHA: un Langage Equationnel pour la Conception et la
Programmation d’Architectures Paralleles Synchrones,” Ph.D. disserta-
tion, L’Universite de Rennes I, IRISA, Campus de Beaulieu, Rennes,
France, December 1989.

[2] H. Le Verge, “Un Environnement de Transformations de Program-
mmes pour la Synthese d’Architectures Regulieres,” Ph.D. dissertation,
L’Universite de Rennes I, IRISA, Campus de Beaulieu, Rennes, France,
Oct 1992.

[3] T. Yuki, G. Gupta, D. Kim, T. Pathan, and S. Rajopadhye, “AlphaZ:
A System for Design Space Exploration in the Polyhedral Model,”
in Proceedings of the 25th International Workshop on Languages and
Compilers for Parallel Computing, 2012.

[4] MMAlpha, “MMAlpha: a Programming Environment for Manipulating
ALPHA programs,” 2009, http://www.irisa.fr/cosi/ALPHA/.

[5] PoCC, “PoCC: the Polyhedral Compiler Collection,” 2012,
http://www.cse.ohio-state.edu/ pouchet/software/pocc/.

[6] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic Transformations for
Communication-minimized Parallelization and Locality Optimization in
the Polyhedral Model,” in Proceedings of the Joint European Confer-
ences on Theory and Practice of Software 17th international conference
on Compiler construction, ser. CC’08/ETAPS’08. Springer-Verlag,
2008, pp. 132–146.

[7] J. C. Chun Chen and M. Hall, “CHiLL: A framework for Composing
High-level Loop Transformations,” University of Southern California,
Tech. Rep., 2008.

[8] C. Bastoul, N. Vasilache, A. Leung, B. Meister, D. Wohlford, and
L. R., “Extended static control programs as a programming model for
accelerators, a case study: Targetting clearspeed csx700 with the r-stream
compiler,” in First Workshop on Programming Models for Emerging
Architectures (PMEA), Raleigh, NC, Sept 2009, p. to appear.

[9] F. Dupont de Dinechin, “Systemes Structures d’Equations Recurrentes
: Mise en Oeuvre dans le Langage Alpha et Applications,” Ph.D.
dissertation, Universite de Rennes, IRISA, Rennes, janvier 1997.

[10] F. Dupont de Dinechin, P. Quinton, and T. Risset, “Structuration of
the ALPHA Language,” in Massively Parallel Programming Models,
W. Giloi, S. Jahnichen, and B. Shriver, Eds. IEEE Conmputer Society
Press, 1995, pp. 18–24.

[11] P. Le Moenner, L. Perraudeau, S. Rajopadhye, T. Risset, and P. Quinton,
“Generating Regular Arithmetic Circuits with AlpHard,” in Massively
Parallel Computing Systems, May 1996.

[12] D. K. Wilde, “The ALPHA Language,” Unite de recherche Inria
Roquencourt et Sophia-Antipolis, Tech. Rep., 1994.

[13] C. Bastoul, “Code generation in the polyhedral model is easier than you
think,” in PACT’13 IEEE International Conference on Parallel Archi-
tecture and Compilation Techniques, Juan-les-Pins, France, September
2004, pp. 7–16.

[14] P. Feautrier, “Some Efficient Solutions to the Affine Scheduling Prob-
lem. Part II. Multidimensional time,” International Journal of Parallel
Programming, vol. 21, no. 6, pp. 389–420, 1992.

[15] T. Risset, F. de Dinechin, and S. Robert, “Structured Scheduling of
Recurrence Equations,” INRIA, Rapport de recherche RR-3282, 1997.

[16] V. Basupalli, “The alphz verifier,” Master’s thesis, Colorado State
University, CO, USA, Dec 2011.

[17] Gautam and S. Rajopadhye, “Simplifying Reductions,” SIGPLAN Not.,
vol. 41, no. 1, pp. 30–41, Jan. 2006.

[18] M. Griebl and C. Lengauer, “The loop parallelizer LooPo,” in CPC
1996: Sixth Workshop on Compilers for Parallel Computers, M. Gerndt,
Ed., vol. 21, 1996, pp. 311–320.

[19] Y. Zou and S. Rajopadhye, “Automatic parallelization of ’inherently
sequential’ nested loop programs,” Colorado State University, Computer
Science Dept., Tech. Rep. 11-102, March 2011.

[20] D. Kim and S. Rajopadhye, “Efficient tiled loop generation: D-tiling,” in
LCPC 2009: The 22nd International Workshop on Languages and Com-
pilers for Parallel Computing, C. Gao, Pollock and Li, Eds. Newark,
DE: Springer, LNCS, October 2009, pp. 293–307.

