
Forelem: A Versatile Optimization Framework
For Tuple-Based Computations

K. F. D. Rietveld and H. A. G. Wijshoff

Leiden University, LIACS, Leiden, The Netherlands
krietvel@liacs.nl, harryw@liacs.nl

Abstract. The forelem framework arose from the unification of code
optimization in seemingly distinct fields of programming: transactional
(database) applications and other (imperative) applications. Tradition-
ally, the optimization of transactional applications for a large part relies
on DBMS (query) optimizations to efficiently retrieve the desired data
from a database. On the other hand, traditional optimizations on appli-
cation codes rely for a large part on (loop based) compiler optimizations,
which are vital for the generation of efficient machine code. In this paper,
we will make a case for the forelem framework to be used as a versatile
unifying optimization platform for tuple-based computations in general.
An overview is presented of all transformations that are included within
the forelem framework up till now. Apart from transformations that tar-
get the loop structure, the forelem framework is also capable of deriving
efficient data storage formats for a given computation.

Keywords: Optimizing Compilers, Intermediate Representation, Tuple-Based
Computations, Program Transformation

1 Introduction

The forelem framework arose from the unification of code optimization in seem-
ingly distinct fields of programming: transactional (database) applications and
other (imperative) applications, and unifies these distinct fields of programming
by expressing queries in an intermediate representation as a series of tuple ac-
cesses governed by simple loop control. Subsequently, this intermediate represen-
tation is optimized by traditional optimizing compiler techniques, accomplishing
results similar to query optimization.

In past work, we have already shown the advantages of the approach taken by
the forelem framework. The forelem framework has been used to perform vertical
integration of database applications, where queries in a database application are
replaced with code segments that evaluate these queries using direct access to
a local data store [13,14]. Subsequently, the application and data access codes
are optimized together and we have shown that this can result in a reduction in
energy consumption up to 90% [13]. Furthermore, possibilities to optimize Big
Data applications using parallel forelem loops have been investigated as well as

a novel approach for the optimization of Sparse Matrix kernels, that leads to the
automatic generation of different storage formats for the sparse structures.

The main feature of the forelem framework consists of accessing data through
a tuple space. As the forelem framework was initially envisioned for database
applications, its main features rely on viewing data as being stored as (multi)sets
of tuples. Next to accessing data as tuples, the forelem framework allows the ex-
ecution order of tuple computations (transactions) to be out of order. Because
of this out of order execution, application of compiler optimizations has to be
carefully handled. As standard compiler optimizations rely on data dependence
analysis and loop-carried dependencies, and these loop-carried dependencies are
non-existing in forelem loop nests, the conditions under which the transforma-
tions can be applied have to be reconsidered.

Within the forelem framework, compiler transformations are being defined
which operate on three levels: the tuple level, the materialized loop index level
and the concretized data access level. The forelem tuple level provides an elegant
representation method for expressing different data access codes such as database
queries and sparse matrix algebra. Within the materialized loop index level,
index sets on the tuple space that specify access patterns, are being represented
as array accesses. By giving the compiler transformations framework access to
this second level of data access, the compiler can address the order of data access
while the order of execution is not specified. Finally, within the concretized data
access level, loops are expressed using regular (integer) iteration bounds. At this
level, standard compiler optimizations can be applied, taking into account the
different semantics for data dependencies.

For the different application areas of the forelem framework, different trans-
formations have been devised. While such transformations were defined within
the context of a particular application area, these transformations are generic
in nature and may well be of use in other application areas. In this paper,
an overview is presented of all transformations that are included within the
forelem framework up till now. Conditions under which the transformations can
be applied, with regards to the different treatment of data dependencies, will be
discussed.

This paper is organized as follows: in Section 2 the forelem intermediate rep-
resentation is introduced. Section 3 describes basic code transformations that can
be applied at the tuple level and the conditions under which these transforma-
tions can be applied. Section 4 discusses loop scheduling and data decomposition
techniques that are used for the parallelization of forelem loops. Section 5 intro-
duces the orthogonalization transformation, that can be used to impose a certain
order on the iteration of the data. This is a preparatory step to materialization,
discussed in Section 6. In this section, the process of transforming a loop to the
materialized loop index level is defined and several transformations applicable at
the materialized loop index level are described. Section 7 outlines how loops are
converted to the concretized data access level. Section 8 briefly presents how the
forelem framework is implemented. Finally, Section 9 presents the conclusions
and future work.

2

2 The Forelem Intermediate Representation

In this section the basics of the forelem intermediate representation are de-
scribed. The intermediate representation is centered around the forelem loop
construct. Each forelem loop iterates over a specific array of structures. The
subscripts of this array that are accessed are fetched from an “index set” that is
associated with the array.

The arrays of structures that are iterated by forelem loops are modeled after
database tables which are defined as multisets. The structure reflects the format
of a database tuple. In an array of structures A a tuple at index i is accessed
with A[i] and a specific field field1 in that tuple is accessed with A[i].field1.

An index set is a set containing subscripts i ∈ N into an array. Since each
array subscript is typically processed once per iteration of the array, these sub-
scripts are stored in a regular set. Index sets are named after the array they refer
to, prefixed with “p”. For example, pA is the index set of all subscripts into an
array A: ∀s ∈ A : ∃i ∈ pA : A[i] = s. Random access of an index set by subscript
is not possible, instead all accesses are done using the ∈ operator.

The body of a forelem loop typically performs an action on the tuple sub-
scripted by the current value of the loop iterator. When used in the context of
database codes, the loop body often outputs tuples to a temporary or result set.
Temporary sets are generally named T1,T2, ...,Tn and result sets R1,R2, ...,Rn.
In the context of, for example, sparse matrix codes a computation is typically
performed also involving data from dense matrices or vectors. Results could be
stored in a dense array.

Considering an array A with fields field1 and field2, a forelem loop that
iterates all entries of A, outputting the value of field1 of each row, is written as
follows:

forelem (i; i ∈ pA)
R = R ∪ (A[i].field1)

Although the forelem loop appears to be very similar to a foreach loop that exists
in many common programming languages, forelem loops distinguish themselves
by the use of the index sets. Every forelem loop iterates a single array, using
subscripts from an index set that is associated with that array. Note that, the
order of the subscripts in the index set is undefined. As such, forelem loops do
not have explicit looping structures and the exact semantics of the iteration of
an array are determined in the course of the optimization process. Index sets
are the essence of forelem loop nests as they encapsulate iterations and simplify
the loop control so that aggressive compiler optimizations can be successfully
applied.

Using conditions on index sets it is possible to narrow down the range of the
array that is iterated. For example, the index set denoted by pA.field2[k] con-
tains only those subscripts into A for which field2 has value k. This is expressed
mathematically as follows:

pA.field2[k] ≡ {i | i ∈ pA ∧ A[i].field2 = k}

3

So, in order to only iterate entries of A in which the value of field2 is 10, the
following forelem loop is used:

forelem (i; i ∈ pA.field2[10])
R = R ∪ (A[i].field1)

Note, that pA.field2[10] is not expressed more explicitly as the exact execution
will be determined by the optimization process. This index set might be explicitly
generated (at compile- or run-time), combined with other index sets, moved or
eliminated. Alternatively, during the optimization process it may be decided to
create a variant of array A only containing the tuples to be iterated.

More sophisticated index sets are possible, such as having conditions on mul-
tiple fields, in this case on field1 and field2 :

pA.(field1, field2)[(k1, k2)] ≡
{i | i ∈ pA ∧ A[i].field1 = k1 ∧ A[i].field2 = k2}

Instead of a constant value, the values kn can also be a reference to a value from
another array. To use such a reference, the array, subscript into the array and
field name must be specified, e.g.: A[i].field. To select values field1 > 10 an
interval is used: (10,∞).

3 Basic Code Transformations

In this section, the different basic code transformations that can be applied
on the forelem tuple level are described. These transformations are based on
existing optimizing compiler techniques. Therefore, the description of the trans-
formations will refer to common compiler analysis techniques: data dependence
analysis [10,12,3,18] and def-use analysis [2,8].

3.1 Loop Invariant Code Motion

Loop Invariant Code Motion is a kind of common subexpression elimination
where statements which are invariant under the loop’s iteration variable can be
moved to an outer loop or completely out of the loop nest. Within the forelem
framework this transformation is generally used to move condition testing of
array fields to outer loops to prune the iteration space, or to inner loops to not
inhibit or complicate the application of loop transformations. For example:

forelem (i; i ∈ pX)
forelem (j; j ∈ pY)
if (X[i].field2 == value && Y[j].field2 == X[i].field1)

R = R ∪ (Y[j].field1)

4

compares the value X[i].field2 with a constant value. The reference X[i].field2
is invariant under the inner loop, so can be moved to the outer loop. Fully mov-
ing the condition test out of the loop nest is not possible, because the array
reference is variant under the outermost loop. The result is:

forelem (i; i ∈ pX)
if (X[i].field2 == value)
forelem (j; j ∈ pY)
if (Y[j].field2 == X[i].field1)

R = R ∪ (Y[j].field1)

Similarly, statements can be moved to the innermost loop, to enable more pos-
sibilities for the application of loop transformations, such as Loop Interchange.

3.2 Loop Interchange

The standard Loop Interchange transformation changes the order in which the
statements in the loop are executed. This transformation is only valid if the new
execution order preserves all dependencies of the original execution order [18].
Commonly, data-dependence analysis [10,12,3] is employed to formally verify
whether the data-dependence relations are preserved across loop transforma-
tions. In general, only certain loop-carried dependencies can prevent application
of Loop Interchange. A forelem loop does not specify a particular execution
order and therefore loop-carried dependencies cannot exist. As a consequence,
interchanges of loops in a perfect loop nest are always valid.

Loop-carried dependencies are therefore only caused by dependencies of the
loop bounds of inner loops on outer loop iteration counters. In this case, Loop In-
variant Code Motion is first used to move the conditions to the inner loop before
the loop nest is reordered and back to the outermost loop after the reordering.
This way, Loop Interchange is applied to a perfectly nested loop nest.

Within the forelem framework the Loop Interchange transformation is used
to reorder loops such that as many conditions as possible are tested in the
outermost loop to prune the search space. As an example, consider:

forelem (j; j ∈ pY)
forelem (i; i ∈ pX.(field1,field2)[(Y[j].field2,value)])

R = R ∪ (Y[j].field1)

First, the conditions are made explicit and, if necessary, moved to the outermost
loop. Now that the loop nest is in a perfectly nested form, this allows the two
loops to be interchanged:

forelem (i; i ∈ pX)
forelem (j; j ∈ pY)
if (X[i].field2 == value && Y[j].field2 == X[i].field1)

R = R ∪ (Y[j].field1)

5

3.3 Iteration Space Expansion

Within the forelem framework a transformation known as Iteration Space Ex-
pansion is defined. This transformation is inspired by the Scalar Expansion trans-
formation, which is typically used to enable parallelization of loop nests, and by
the expansion of the iteration spaces iterated by loops, as described in [17], used
to transform irregular access patterns into regular ones.

Iteration Space Expansion expands the iteration space of a forelem loop by
removing conditions on its index set. For a loop of the form, with SEQ denoting
a sequence of statements:

forelem (i; i ∈ pA.field[X])
SEQ;

the following steps are performed:

1. the condition A[i].field == X is removed, which expands the iteration
space so that the entire array A is visited,

2. scalar expansion is applied on all variables that are written to in the loop
body denoted by SEQ and references to these variables are subscripted with
the value tested in the condition, in this case A[i].field,

3. all references to the scalar expanded variables after the loop are rewritten
to reference subscript X of the scalar expanded variable.

3.4 Loop Fusion

Loop Fusion [9] is a traditional compiler optimization that can be readily applied
to forelem loops. The transformation can, under certain conditions, merge two
loops (at the same level if contained in a larger loop nest) into a single loop. Ap-
plication of Loop Fusion is only prohibited by certain loop-carried dependencies.
Such loop-carried dependencies do not exist in forelem loops. Therefore, Loop
Fusion can be applied on two adjacent forelem loops if the iteration spaces of
the two loops are equal. This is the case if the index sets for both loops refer to
the same table and contain the same set of subscripts into these tables. After
Loop Fusion has been applied, the bodies of both loops are then executed for
the same set of subscripts into the same array. For example:

forelem (i; i ∈ pTable1)
R1 = R1 ∪ (Table1[i].field1)

forelem (i; i ∈ pTable1)
R2 = R2 ∪ (Table1[i].field2)

can be rewritten into the following, because of the equal iteration bounds:

forelem (i; i ∈ pTable1)
{

R1 = R1 ∪ (Table1[i].field1)
R2 = R2 ∪ (Table1[i].field2)

}

6

Note, that forelem loops generally only access the array being iterated using the
subscript of the current iteration. E.g., an access into an array always has the
form i and not i + 2 or similar. As a consequence, a condition preventing Loop
Fusion from being applied will in general not occur.

4 Parallel Forelem Loops

Within the forelem framework, parallelization consists out of loop scheduling,
which is the problem of scheduling a parallel loop’s iterations onto the available
processors, and data distribution (or decomposition) to the processors. Loop
scheduling is implemented through the application of Loop Blocking to the iter-
ation space of a forelem loop. A distinction is made between direct and indirect
loop scheduling, both of which will be described in this section. Finally, it is
shown how the data set can be decomposed based on the created loop schedule.

Loop scheduling follows from the application of Loop Blocking to the itera-
tion space of a forelem loop. With direct loop scheduling, the iteration space is
blocked by partitioning the index set that is iterated by the forelem loop. On
the other hand, indirect loop scheduling is achieved by blocking on the value
range of a field in the accessed array.

As an example, consider an array A with fields field1 and field2, and the
following loop where SEQ denotes a sequence of statements:

forelem (i; i ∈ pA)
SEQ;

In order to parallelize this loop to N processors, a loop schedule must be created.
To create a direct loop schedule, Loop Blocking splits the iteration space of this
loop, which is the index set pA, into N partitions:

pA = p1A ∪ p2A ∪ . . . ∪ pNA

and the forelem loop becomes:

for (k = 1; k <= N; k++)
forelem (i; i ∈ pkA)
SEQ;

Subsequently, to parallelize this loop to N processors, each processor must be
assigned a partition of the index set pA. This is achieved by replacing the for
loop with a forall loop, indicating that the outer loop is executed in parallel:

forall (k = 1; k <= N; k++)
forelem (i; i ∈ pkA)
SEQ;

As a next step, the data can be decomposed according to the selected partition-
ing. So, a decomposition of table A is created:

7

A = A1 ∪ A2 ∪ . . . ∪ AN

based on the partitioned index sets pkA. Note that, this decomposition of A yields
an index set pAk for every Ak. The loop operating on the decomposed data is:

forall (k = 1; k <= N; k++)
forelem (i; i ∈ pAk)
SEQ;

where in the loop body data is accessed through for example Ak[i].field1. Note
that, in case data accesses are performed to data that is not available locally after
the data decomposition, these accesses can be resolved by performing remote
communication to a processor that does have the necessary data available.

In indirect data partitioning, Loop Blocking is not done based on the iterated
index set, but on the value range of one of the table’s accessed fields. Consider
the same starting point:

forelem (i; i ∈ pA)
SEQ;

Array A is to be distributed into N partitions based on field1. The notation
A.field1 denotes the set of values of the field1 found in all subscripts of A. If
X = A.field1, then

X = X1 ∪ X2 ∪ . . . ∪ XN

is a partitioning of X into N segments. The blocked loop is:

for (k = 1; k <= N; k++)
for (l ∈ Xk)
forelem (i; i ∈ pA.field1[l])
SEQ;

In this loop nest the outer loop can be parallelized. In the parallelized loop nest
a processor Pk is responsible for processing partition Xk of this partitioning and
will execute the original forelem loop only for i ∈ pA, l ∈ Xk : A[i].field1 = l.
This results in:

forall (k = 1; k <= N; k++)
for (l ∈ Xk)
forelem (i; i ∈ pA.field1[l])
SEQ;

Also in this case, the table A can be decomposed based on the selected indirect
loop schedule. The decomposition of A into N parts Ak, with corresponding index
sets pAk is based on the partitioning X into Xk. This results in the following loop
nest:

8

forall (k = 1; k <= N; k++)
for (l ∈ Xk)
forelem (i; i ∈ pAk.field1[l])
SEQ;

where the loop body accesses, for example, Ak[i].field1. Note that, this data
decomposition guarantees that pAk only contains subscripts i such that values
Ak[i].field1 are always contained in Xk. Based on this observation, the loop can
be simplified to:

forall (k = 1; k <= N; k++)
forelem (i; i ∈ pAk)
SEQ;

without affecting the final result.
Within the forelem framework, the optimization of the data distribution

is performed after the selection and optimization of the data partitioning or
loop scheduling. The process of data distribution optimization depends on the
communication model that is used to transfer data between processors, on any
initial data distribution that is present and on the loop schedules that have been
selected for other forelem loops in the application that access the same data.
Details of how data distribution and the communication model are represented
in the intermediate representation and how this optimization process is carried
out will be described in a future work.

Many static and dynamic approaches to loop scheduling have been described
in the literature [11,16,5]. A static loop schedule is determined entirely at compile-
time. Dynamic approaches schedule iterations to idle processors at run-time and
have the opportunity to better balance the load in case the cost for each loop
iteration is not equal.

An example dynamic scheduling approach is Guided Self-Scheduling (GSS) [11].
In GSS, iterations of loops are scheduled to idle processors at runtime. Iterations
are allocated in groups called chunks. The process starts with a large chunk size
and this size gradually decreases with the course of execution. The next chunk
size to use is determined by dividing the number of remaining iterations by
the number of processors. Processors that finish their chunk earlier than other
processors are assigned a new smaller chunk. This technique results in a better
balancing of the work.

5 Orthogonalization

In forelem loops, iteration of a table of tuples is controlled by the index set. No
order is defined on the index set, which has as consequence that the iteration
order of the table is undefined. In this section, the orthogonalization transforma-
tion is introduced, which makes it possible to impose a certain order in which the
table is iterated. This is achieved by partitioning the accesses to the array based
on the values of one or more table fields. The orthogonalization transformation

9

is used to control the order in which data is accessed as a preparatory step to
Materialization, which is discussed in the next section.

Let A be a table with field1, field2, ...fieldn. Consider the loop:

forelem (i; i ∈ pA)
... A[i] ...

In this loop, the tuples of A can be iterated in any order. As an example, assume
an iteration order is to be imposed on A such that tuples A are accessed in blocks
with equal values for field1. The orthogonalization transformation is carried
out to achieve this, resulting in the following loop nest:

forelem (ii; ii ∈ A.field1)
forelem (i; i ∈ pA.field1[ii])
... A[i] ...

A.field1 in the outer loop denotes all possible values of field1 that occur in
A. So, the iteration space of the outer loop consists out of every value of field1
in A.

The original loop iterates all tuples of A. The transformed loop nest will for
every value of field1, iterate all tuples of A for which field1 equals this value.
As a result, the transformed loop also iterates all tuples of A.

Application of the orthogonalization transformation is not limited to a single
field. An example of orthogonalization on two fields is:

forelem (ii; ii ∈ A.field1)
forelem (jj; jj ∈ A.field2)
forelem (i; i ∈ pA.(field1,field2)[(ii,jj)])
... A[i] ...

The outer loops that are introduced by the orthogonalization transformation
iterate all values of a given table field. If it is possible to express this range of
values as a subset of the natural numbers, i.e. A.field1 ⊆ N, the encapsulation
transformation can be applied, which replaces the loop over all table field values
with a loop over a subset of the natural numbers.

With the encapsulation transformation, a loop

forelem (ii; ii ∈ A.field1)

where A.field1 = {1, 2, 6, 7, 8, 10}, is replaced with:

forelem (ii; ii ∈ N10)

with N10 = [1..10]. In the encapsulated loop, the values 3, 4, 5, 9 will be iterated,
but note that no tuple will exist where field1 equals any of these values. As a
result, the inner loop is not executed for these values, maintaining the iteration
space of the original loop.

10

6 Materialization

In this section, the materialization transformation is described, which material-
izes the tuples iterated by a forelem loop using the accompanying index set to
an array in which the data is represented in consecutive order and is accessed
with integer subscripts. Although this can be seen as a simple normalization op-
eration, it is an important enabling step that allows the compiler to address and
modify the order of data access to these arrays. In fact, by materialization the
execution order of an inner loop is fixed. (In the case of nested loops, orthogonal-
ization fixes the order of the outermost loop). After two forms of materialization
have been introduced, a number of transformations targeting the order in which
data access takes place will be described.

A distinction is made between loop-independent and loop-dependent materi-
alization. In loop-independent materialization, conditions in the index set of the
loop to be materialized are not dependent on one of the outer loops. Materializa-
tion will result in a one-dimensional array. In loop-dependent materialization,
the resulting array will get an additional dimension for each dependent loop.
Both cases of materialization will now be discussed in turn.

6.1 Loop Independent Materialization

We first consider loop-independent materialization. The following loop iterates
all tuples of A whose field equals a value X:

forelem (i; i ∈ pA.field[X])
... A[i] ...

To be able to determine which tuples of A to access, the index set is used. This
is, in fact, an indirection level. This indirection can be removed by materializing
the index into the tuple space as an array PA which only contains the entries of
A that should be visited by this loop. This results in:

forelem (i; i ∈ N∗)
... PA[i] ...

with N∗ = [0, |PA|). The array PA only contains elements from A for which the
condition A[i].field == X holds. The compiler is now enabled to address the
order in which the data in PA is accessed, while the execution order of the loop
is not specified. For example, using the transformations that can be applied on
the materialization form, which are described below, the compiler can determine
to put entries in PA in a specific order. The loop control is selected at the con-
cretization stage, where the compiler can ensure the loop control for the loop
will iterate the items of PA consecutively.

For the general definition of loop-independent materialization, consider a
loop iterating a sparse structure A:

forelem (i; i ∈ pA)
... A[i] ...

11

which is transformed to:

forelem (i; i ∈ N∗)
... PA[i] ...

with N∗ = [0, |PA|). This transformation materializes the sparse structure A to
an one-dimensional array PA.

The transformation can also be applied if the loop to be materialized is
nested in another forelem loop and the posed condition in the index set of the
loop to be materialized is independent of the outer loop. Consider, for example,
where the outer loop could be the result of the application of the encapsulation
transformation:

forelem (i; i ∈ Nn)

forelem (j; j ∈ pA.field[X])
... A[j] ... B[i] ...

Materialization of the inner loop will enable the compiler to address the order
of data access of A together with the other array or tuple space references.
Materialization of the inner loop proceeds as explained above and the outer
loop is untouched:

forelem (i; i ∈ Nn)

forelem (j; j ∈ N∗)
... PA[j] ... B[i] ...

with N∗ = [1, |PA|] and PA only containing items that satisfy the condition.

6.2 Loop Dependent Materialization

If a loop to be materialized is contained in a loop nest and the conditions of its
index set have a dependency on another loop, then the above described loop-
independent materialization cannot be applied. Instead, loop-dependent mate-
rialization must be used, which is described in this subsection. Because loop-
dependent materialization will result in higher-dimensional arrays, this results
in more opportunities for the compiler to address and modify the order of data
access to these arrays.

In general, a loop-dependent materialization has the form:

forelem (i; i ∈ No)

...

forelem (n; n ∈ Nt)

forelem (p; p ∈ pA.(fieldi, ...,fieldn)[(i,...,n)])
... A[p] ...

The index set iterated in the inner loop has a dependency on one or more of
the outer loops. The iteration of A is materialized to an iteration of a multi-
dimensional array PA, in which each loop-dependent condition is represented as
an additional dimension in PA. The array PA only contains these items that are
iterated by the original index set on A:

12

forelem (i; i ∈ No)

...

forelem (n; n ∈ Nt)

forelem (p; p ∈ N∗)
... PA[i]...[n][p] ...

with N∗ = [0, |PA[i]...[n]|). After this transformation, PA only contains entries
that satisfy the conditions of the original index set. The dimensions of the mate-
rialized array correspond with the original conditions and thus with the loops on
which the condition depended. Loop transformations, such as Loop Interchange,
will thus have an effect on the order in which the data of PA is accessed. By
taking this into account, the compiler can determine an efficient order in which
to store the elements of PA, which has at this point not been set in stone.

To illustrate the loop-dependent materialization, consider a simple nested
loop:

forelem (i; i ∈ Nn)

forelem (j; j ∈ pA.row[i])
... A[j] ...

The index set of the inner loop, pA.row[i] is dependent on iterator i of the outer
loop. As a consequence, the array PA will obtain a dimension for this iterator i.
The result of the materialization transformation is as follows:

forelem (i; i ∈ Nn)

forelem (j; j ∈ N∗)
... PA[i][j] ...

with N∗ = [0, |PA[i]|). Because i was determining which row of A was iterated, in
the transformed loop i still controls the order in which the rows of the original
matrix A are accessed in the materialization PA.

In case the index set has dependencies on two loops, a three-dimensional
array is generated. Naturally, this has more degrees of freedom for optimization
than the two-dimensional materialization. The application of the transformation
is similar in case of doubly-nested loops. In this example, the index set has
dependencies on two different outer loops:

forelem (i; i ∈ Nn)

forelem (j; j ∈ Nm)

forelem (k; k ∈ pA.(row,col)[(i,j)])
A[k].value = ...

This results in a three-dimensional array PA:

forelem (i; i ∈ Nn)

forelem (j; j ∈ Nm)

forelem (k; k ∈ N∗)
PA[i][j][k].value = ...

with N∗ = [0, |PA[i][j]|).

13

6.3 Transformations on the Materialized Form

After a forelem loop has been put in a materialized form, the data to be pro-
cessed has been put in an array in consecutive order and is accessed with integer
subscripts. At this stage, the compiler can modify the exact order of data access
to these arrays and how this data is stored. In this section, a number of trans-
formations are described that affect the storage of the data processed by a loop
nest.

Horizontal Iteration Space Reduction The aim of Horizontal Iteration
Space Reduction is to reduce unused fields from a table’s schema. In fact, it
is possible to perform this transformation before the materialization stage.

Formally, the transformation is defined as follows. Let T be a table with
schema S (T) = (field1 field2 field3 field4), C a list of condition fields
C ⊂ (field1 field2) and V a list of values. Consider the loop nest:

forelem (k; k ∈ pT.C[V])
R = R ∪ T[k].field1 + T[k].field2

We define a new table T′ ⊆ T with S (T′) = (field1 field2) and replace the
use of T with T’ in the loop.

Structure splitting Before materialization, tables are represented as multisets
of tuples, accessible with integer subscripts. By default, the array that is the
result of the materialization operation is an array of tuples, or structures. In
some cases, it is more efficient to use a structure of arrays, i.e. the structures
are split [15,7]. Within the forelem framework, this is defined as the structure
splitting transformation.

Consider the materialized loop nest:

forelem (i; i ∈ Nm)

forelem (k; k ∈ N∗)
... PA[i][k].value ...

Structure splitting will modify the data storage of the array and convert the
data accesses in the loop to:

forelem (i; i ∈ Nm)

forelem (k; k ∈ N∗)
... PA.value[i][k] ...

N∗ materialization Materialized loops use the N∗ index set as the set of integer
subscripts to access the materialized array. How exactly these integer subscripts
are stored is initially encapsulated within N∗ and can be made explicit using N∗
materialization.

Consider the following loop, the result of a materialization to PA:

14

forelem (i; i ∈ Nm)

forelem (k; k ∈ N∗)
... PA[i][k] ...

As a prerequisite for the final code generation stage, N∗ must be made explicit.
This can be achieved by converting N∗ to a set PA_len. There are different means
in which this set can be defined. The first is to define the set as follows:

PA len[q] = max(len(PA[q]))

in which case all PA_len[q] values are the same and a single set containing
integers up to the maximum value can be stored for this loop nest. Padding
is inserted in the array PA for the values PA[i][k] with k >= PA_len[i]. The
second means to create this array is to avoid inserting padding in PA. In this
case PA_len[q] = len(PA[i]).

Regardless of which means is chosen, the resulting loop after N∗ materializa-
tion is:

forelem (i; i ∈ Nm)

forelem (k; k ∈ PA len[i])
... PA[i][k] ...

Note that, in this loop the iteration order is still undefined. Only N∗ = [0,N∗)
has been replaced with PA len[i] = [0, PA len[i]). In a subsequent concretization
step the iteration order will be determined. For example, the loop:

forelem (k; k ∈ PA len[i])

is then concretized to:

for (k = 0; k < PA len[i]; k++)

N∗ sorting In case of loop-dependent materialization, N∗ encapsulates the sets
of integer subscripts used for iteration of the inner loop. These sets are ordered
irrespective of their cardinality. If the loop is to be parallelized, it is beneficial
if the work is divided into blocks with evenly sized values for PA_len (after N∗
materialization). One way to achieve this is by imposing an order on the iteration
of N∗.

The aim of N∗ sorting is to find an order of the iterator values i such that
the value of N∗ decreases with subsequent iterations of the outer loop on i

forelem (i; i ∈ Nm)

forelem (k; k ∈ N∗)
... PA[i][k] ...

Consider that N∗ = [0, len(PA[i])). The goal is to iterate through Nm, such that
len(PA[i]) decreases. Let perm(Nm) store the permutation of Nm for which
this holds. Then, the loop is transformed to:

15

forelem (i; i ∈ perm(Nm))

forelem (k; k ∈ N∗)
... PA[i][k] ...

Note that this will affect the order of the data PA, which will be put in the
corresponding sorted order at the concretization stage.

Dimensionality Reduction Loop-dependent materialization results in a multi-
dimensional array by default. If this array is concretized as a multi-dimensional
array, padding may have to be inserted for the uneven lengths of the rows. It is
possible to avoid the introduction of this padding by storing the rows back to
back. This reduces the dimensionality of the materialized array.

Consider the loop nest:

forelem (i; i ∈ Nm)

for (k = 0; k < PA len[i]; k++)
... PA[i][k] ...

to reduce the dimensionality of the materialized array PA by one, this is trans-
formed into:

forelem (i; i ∈ Nm)

for (k = PA ptr[i]; k < PA ptr[i+1]; k++)
... PA[k] ...

Based on the PA_len array, a new PA_ptr array is introduced, which keeps track
of the start and end of each row in PA. Note that, the order of the iteration
domain [PA ptr[i], PA ptr[i + 1]) does not have to be defined and could be in
any order.

7 Concretization

In Concretization, a forelem loop iterating a subset of integers is transformed
into a regular for loop. This implies that a specific iteration order of the subset
of integers is chosen. As example, consider the following loop, which is the result
of a materialization transformation:

forelem (i; i ∈ N∗)
... PC[i] ...

First, N∗ materialization is applied, resulting in:

forelem (i; i ∈ PA len)
... PC[i] ...

then the loop can be subsequently concretized to:

for (i = 0; i < PA len; i++)
... PC[i] ...

16

Fig. 1. An illustration of the application of orthogonalization, materialization and con-
cretization on sparse matrix tuples in (row | col | value) format. The result of this
concretization is commonly known as the ITPACK format (the arrays are stored in
row-major order). The arrows displayed in gray depict a non-exhaustive set of other
possibilities.

17

Concretization is a simple one-to-one mapping from the given materialized
loop to a C for loop that can be compiled by a regular C compiler. Essentially,
at this point the data storage format is generated that has been chosen by the
optimization process. Using the different transformations that can applied on
a materialized loop, described in the preceding section, many different storage
formats can be generated for a single loop nest.

In the context of sparse matrix computations, sparse matrices can be repre-
sented as tables by storing the nonzeroes of the sparse matrix as tuples. The com-
putation is expressed as a forelem loop operating on this table. Through the de-
scribed transformations, orthogonalization, materialization and concretization,
many different loops and accompanying data storage formats can be generated
that achieve the same result. Figure 1 illustrates how such data formats are de-
rived, starting from an unordered set of tuples. Established data storage formats,
such as ITPACK and Jagged Diagonal Storage format [4], simply follow from
the application of the transformations described in this paper. For example, the
transformation sequence drawn in black in Figure 1 results in ITPACK format
(considering row-major order storage of arrays in memory). When the structure
splitting transformation is followed by dimensionality reduction, Compressed
Row Storage (CSR) format is generated. Similarly, a transformation sequence
that continues from orthogonalization on column can result in Compressed Col-
umn Storage (CCS) format.

8 Implementation of the Forelem Framework

The forelem framework was initially envisioned to support the integral opti-
mization of database applications. To be able to support different programming
languages and database APIs, a generic library was designed: libforelem. This
library is capable of creating and manipulating forelem loop nests, by represent-
ing these using an internal Abstract Syntax Tree (AST). Different applications
can make use of libforelem to create and manipulate forelem ASTs. For exam-
ple, to compile stand-alone SQL queries to code, libforelem is used from a simple
wrapper program that inputs the query and table schemas, transforms the query
into forelem AST, and invokes a code generator of choice to generate the code.
Other parsers that take a certain language as input and produce forelem loops
can be developed next to the SQL parser, so that other problem domains can
be supported.

The libforelem library is capable of performing various analyses and trans-
formations on the forelem AST. Many of the implemented transformations are
inspired by standard compiler (loop) transformations. An abstract code genera-
tion interface is present in the library to generate code from any forelem AST.
Currently, the output of C/C++ code and algebraic forelem is supported. How-
ever, the use of forelem loops is not restricted to C/C++ and other languages
can be supported by implementing the abstract code generation interface.

For our approach of vertical integration of database applications that is de-
scribed in the Introduction, libforelem is used from a prototype Clang [1] com-

18

piler plugin. This plugin scans a C/C++ AST for calls to database API and ex-
tracts the performed operations, such as exact query strings that are requested
to be executed. The extracted information is passed to libforelem. Transforma-
tions can then be performed as an interplay between the C/C++ AST and the
forelem AST created by libforelem. Finally, code in the C/C++ source code is
replaced with code generated using libforelem.

Note, that forelem loops are only used by the compiler tooling and are never
visible to the end user. The general nature of the forelem framework allows
for its usage with other problems. For example, to support the expression of
BLAS kernels in the forelem AST, a C/C++ compiler is extended to be able to
handle the forelem algebraic representation. A modified compiler can parse this
representation into the forelem AST, using the libforelem library. Subsequently,
the forelem AST can be manipulated in tandem with transformations on the
regular C/C++ code. As a final step, C/C++ code is generated from the forelem
AST and inserted in place of the forelem algebraic expressions, after which native
code is generated by the regular C/C++ compiler

9 Conclusions

In this paper, we have described the forelem framework: a versatile unifying
optimization platform for tuple-based computations. An overview has been pre-
sented of all transformations that are included within the forelem framework up
till now. These include transformations that target the loop structure and a chain
of transformations, from orthogonalization to concretization, that is capable of
deriving efficient data storage formats for a given loop nest.

There are many areas in which the forelem framework can be put to use.
Currently, the forelem framework is capable of generating query codes that are
capable of achieving the same level of performance as these from state-of-the-art
database systems. Other areas in which the forelem framework has been used are
the vertical integration of database applications, optimization of sparse matrix
kernels and Big Data applications. We plan to further improve the optimization
strategies and code generation capabilities of the forelem framework as a future
work. In forthcoming work, we also plan to address other application areas, such
as graph computations, and study the relationship of the forelem framework
with the Linda model [6].

References

1. “clang” C Language Family Frontend for LLVM. http://clang.llvm.org/
2. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Commun. ACM

19(3), 137– (Mar 1976)
3. Allen, R., Kennedy, K.: Automatic translation of fortran programs to vector form.

ACM Trans. Program. Lang. Syst. 9, 491–542 (October 1987)
4. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., Van Der Vorst, H.: Templates for

the solution of algebraic eigenvalue problems: a practical guide, vol. 11. Society for
Industrial Mathematics (1987)

19

5. Bull, J.: Feedback guided dynamic loop scheduling: Algorithms and experiments.
In: Euro-Par’98 Parallel Processing. pp. 377–382. Springer (1998)

6. Carriero, N.J., Gelernter, D., Mattson, T.G., Sherman, A.H.: The linda alternative
to message-passing systems. Parallel computing 20(4), 633–655 (1994)

7. Curial, S., Zhao, P., Amaral, J.N., Gao, Y., Cui, S., Silvera, R., Archambault, R.:
MPADS: memory-pooling-assisted data splitting. In: ISMM ’08: Proceedings of the
7th international symposium on Memory management. pp. 101–110. ACM, New
York, NY, USA (2008)

8. Kennedy, K.: A survey of data flow analysis techniques, pp. 5–54. Prentice-Hall,
Englewood Cliffs NJ (1981)

9. Kennedy, K., McKinley, K.: Maximizing loop parallelism and improving data lo-
cality via loop fusion and distribution. In: Banerjee, U., Gelernter, D., Nicolau, A.,
Padua, D. (eds.) Languages and Compilers for Parallel Computing, Lecture Notes
in Computer Science, vol. 768, pp. 301–320. Springer Berlin / Heidelberg (1994)

10. Kuck, D.J., Kuhn, R.H., Padua, D.A., Leasure, B., Wolf e, M.: Dependence graphs
and compiler optimizations. In: Proceedings of the 8th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. pp. 207–218. POPL ’81,
ACM, New York, NY, USA (1981)

11. Polychronopoulos, C.D., Kuck, D.J.: Guided self-scheduling: A practical scheduling
scheme for parallel supercomputers. Computers, IEEE Transactions on 100(12),
1425–1439 (1987)

12. R., A.J.: Dependence Analysis for Subscripted Variables and its Applicati ons to
Program Transformations. PhD Dissertation, Rice University (1983)

13. Rietveld, K.F.D., Wijshoff, H.A.G.: Quantifying Energy Usage in Data Centers
Through Instruction-Count Overhead. In: SMARTGREENS 2013, 2nd Interna-
tional Conference on Smart Grids and Green IT Systems (May 2013)

14. Rietveld, K.F.D., Wijshoff, H.A.G.: To Cache or Not To Cache: A Trade-off Anal-
ysis For Locally Cached Database Systems. In: ACM International Conference on
Computing Frontiers (May 2013)

15. van der Spek, H.L.A., Groot, S., Bakker, E.M., Wijshoff, H.A.G.: A compile/run-
time environment for the automatic transformation of linked list data structures.
Int. J. Parallel Program. 36(6), 592–623 (Dec 2008)

16. Tzen, T.H., Ni, L.M.: Trapezoid self-scheduling: A practical scheduling scheme for
parallel compilers. Parallel and Distributed Systems, IEEE Transactions on 4(1),
87–98 (1993)

17. Van Der Spek, H.L.A., Wijshoff, H.A.G.: Sublimation: expanding data structures
to enable data instance specific optimizations. In: Proceedings of the 23rd interna-
tional conference on Languages and compilers for parallel computing. pp. 106–120.
LCPC’10, Springer-Verlag, Berlin, Heidelberg (2011)

18. Zima, H., Chapman, B.: Supercompilers for parallel and vector computers. ACM,
New York, NY, USA (1991)

20

