

The Past

- **Automatic Parallelization**
- Abstract interpretation
- Systolic Array Synthesis

Karp Miller & Winograd 1967

Personal advice: read this paper many times, over many years

- Proposed mathematical equations as program representation
- Analysis to detect parallelism (schedules)
- and much more

Karp, Miller & Winograd, JACM 1967: "The Organization of Computations for Uniform Recurrence Equations"

KMW67: Scheduling a URE

Domain of the equation: entire positive quadrant/orthant (but can be more specific)

Dependences: constant vectors

Hyperplane scheduling: Find λ such that all points $\lambda z=t$ have timestamp t. λ is the normal vector of the schedule hyperplane

Colorado State University

What more do you need?

- Systolic Array Synthesis (single UREs)
 - Find a schedule
 - and a processor allocation function
 - Do a "space-time transformation"

Lamport 74 (loop parallelization)

- in a perfectly nested loop, array variables are accessed (read/written) using a special subclass of affine functions
- But main result is for uniform dependences

Lamport, CACM 1974: "Parallel Execution of DO Loops"

- Synthesizing Systolic Arrays from AREs
- More general loops than Lamport¹
- Even Uniform Needs Affine

1. "It is possible generalize [to ...] any linear [access] function but [...] results become weaker and more complicated"

MW67: SURE less contrived example

Optimal solution

$$t_X(i,j) = i$$

$$t_Y(i,j) = i+2j+1$$

Colorado Strate Hold Strate Sity 8

Transformed graph

Limitations of KMW 1967

- Provides sophisticated analysis, but stops there
- Transforming an SURE with variable dependent schedules is not an SURE
 - Need a richer program representation
 - Need to generalize the analysis
 - Need to develop a theory of transformations
- SARE: Systems of Affine Recurrence Equations

But loops are not equations

- "Uniform" memory access functions do not necessarily imply uniform dependences
- Loop dependences are always lexicographically positive
- Is KMW overkill for loops?

Feautrier

- Affine control (mistakenly called "static" control) loops are semantically the same as SAREs
- New scheduling algorithms based on Farkas' lemma
 - single and multi-dimensional time

Feaurier, IJPP1991: "Dataflow analysis of array and scalar references" Feaurier, IJPP1992: "Some efficient solutions to the affine scheduling problem: Parts I and II"

Polyhedral Model: essentials

- Polyhedral program representation:
 - SARES, Affine Control Loops (ACLs) etc.
 - Closure Properties
- Polyhedral Analysis (optimization & tools)
 - LP/ILP/PIP
 - Scheduling, (processor, memory) allocation
 - Nonlinear optimization
- Polyhedral Transformations (CoB, Index set Splitting, etc.)
- Code generation (getting out of the model)

Colorado State University 1

Dependence Analysis

- Irigoin
- Allen-Kennedy
- Banerjee
- Feautrier
- Pugh
- Creusillet

Polyhedral Analysis

Scheduling

- Darte, Vivien, Robert, Quinton, Saouter
- Processor allocation (distribution)
 - Systolic community, Feautrier, Dion, Robert, Li, Chen
- Synchronization
 - 🛯 Lim, Lam
- Memory & counting
 - Feautrier, Lefebvre, Padua, Maydan, Quilleré, Rajopadhye, Clauss

Colorado State University 1

Code Generation

- From single polyhedra
 - Ancourt, Irigoin, LeVerge, Wilde, LeFur, Chamski
- From unions of polyhedra
 - Pugh, Rosser, Greibl, Lengauer, Wilde, Quilleré, Rajopadhye, Bastoul, Feautrier, Boulet
- Tiled code generation
 - Bastoul, Sadayappan, Hartono, Bhaskaran Renaganarayan, Rajopadhye, Kim,

Tiling: polyhedral model meets its Waterloo

- Non-linear transformation breaks closure properties
- A (the most) critical transformation
- A long and rich history (analysis problem)
 - Systolic synthesis
 - Darte, Delosme, Fortes, Teich, Thiele, Bu, Deprettere
 - Compiling for parallelism
 - Irigoin, Schreiber-Dongarra, Ram-Saday, Darte
 - Compiling for Locality
 - Wolf-Lam,
 - Hierarchical tiling

Modern Polyhedral Model

Rubber meets the road (tools, tools, tools) PIPS

- PluTO
 - Bondhugula, Sadayappan, ...
- Fundamental tools
 - Verdoolaege, Feautrier, Bastoul
- POCC
 - Pouchet, Vasillache, Cohen
- WHIRL/WrapIT
- Graphite, Polly, ...
- High level synthesis

Conclusion

History is in the eye of the beholder

Sorry for any omissions

