
Georg	
 Ofenbeck	

Ruedi	
 Steinman	

Victoria	
 Caparrós	
 Cabezas	

Daniele	
 Spampinato	
 	

Markus	
 Püschel	

Applying	
 the	
 Roofline	
 Model	

©	
 Victoria	
 Caparrós	

2013	

Measuring	
 Performance	
 —	
 Run:me	
 	

2

100 400 700 1000 1300 1600 1900 2200 2500 2800
Problem Size

0.0001

0.001

0.01

0.1

1

Runtime [seconds]

dgemv

dgemm

©	
 Victoria	
 Caparrós	

2013	

Measuring	
 Performance	
 —	
 Flops/Cycle	

3

100 400 700 1000 1300 1600 1900 2200 2500 2800
Problem Size

10

Performance [Flops/Cycle]

dgemv

dgemm

1

Peak � seq. (8.0 Flops/Cycle)

©	
 Victoria	
 Caparrós	

2013	

Measuring	
 Performance	
 —	
 Roofline	
 Plot	

4

0.1 1 10

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

Peak Performance (8.0 F/C)

dgemv

dgemm

R
ea

d
/w

ri
te

 ß
 s
eq

.
(6

.2
B
yt

es
/C

yc
le
)

100

2800

100

2800

©	
 Victoria	
 Caparrós	

2013	

Goals:	

¢  Build	
 roofline	
 plots	
 with	
 accurate	
 measurements	
 using	
 hardware	

performance	
 counters	

¢  Analyze	
 roofline	
 plots	
 to	
 understand	
 performance	
 bo6lenecks	
 and	

guide	
 the	
 op8miza8on	
 process	

©	
 Victoria	
 Caparrós	

2013	

Outline	

¢  Mo:va:on	

¢  Introduc:on	
 to	
 the	
 roofline	
 model	

¢  How	
 to	
 measure	
 P	
 and	
 I	
 using	
 hardware	
 performance	
 counters	

¢  Measuring	
 strategy	

¢  Valida:on	
 and	
 results	

6

©	
 Victoria	
 Caparrós	

2013	

Roofline	
 Model	
 —	
 Applica:on’s	
 Performance	

Opera8onal	
 Intensity	

[Flops/Byte]	

Performance 	

[Flops/Cycle]	

4	

2	

1	

1/4	

1/2	

1/4	

 1/2	

 1	

 2	

 4	

 8	

7

16	

[Williams,	
 2009]	
 “Roofline:	
 An	
 InsighKul	
 Visual	
 Performance	
 Model	
 for	
 Mul8core”,	

S.	
 Williams	
 et	
 al.	
 Communica8ons	
 of	
 the	
 ACM,	
 2009	

32	

P	
 =	
 	

T	

W	

I	
 =	
 	
 Q	

W	

W	
 =	
 Floa8ng-­‐point	
 op	
 count	
 [Flops]	

T	
 	
 =	
 Execu8on	
 8me	
 [Cycles]	

P	
 	
 =	
 Performance	
 [Flops/Cycle]	

Q	
 =	
 Bytes	
 transferred	
 to/from	
 DRAM	
 [Bytes]	

I	
 =	
 Opera8onal	
 Intensity	
 [Flops/Byte]	

Some	
 func8on	
 	

run	
 on	
 some	
 input	

©	
 Victoria	
 Caparrós	

2013	

P = I�

Compute	
 Bound	
 Memory	
 Bound	

Roofline	
 Model	
 —	
 Performance	
 Bounds	

Opera8onal	
 Intensity	

[Flops/Byte]	

Performance 	

[Flops/Cycle]	

4	

2	

1	

1/4	

1/2	

1/4	

 1/2	

 1	

 2	

 4	

 8	

P = ⇡

8

Some	
 func8on	
 	

run	
 on	
 some	
 input	

16	

[Williams,	
 2009]	
 “Roofline:	
 An	
 InsighKul	
 Visual	
 Performance	
 Model	
 for	
 Mul8core”,	
 S.	
 Williams	

et	
 al.	
 Communica8ons	
 of	
 the	
 ACM,	
 2009	

32	

©	
 Victoria	
 Caparrós	

2013	

Users	
 of	
 the	
 Roofline	
 Model	

	

	

[Bhatele	
 ,	
 2010]	
 “Understanding	
 Applica8on	
 Performance	
 via	
 Micro-­‐benchmarks	
 on	
 Three	

Large	
 Supercomputers:	
 Intrepid,	
 Ranger	
 and	
 Jaguar”,	
 Abhinav	
 Bhatele	
 et	
 al.	
 Internal8onal	

Journal	
 of	
 High	
 Performance	
 Compu8ng	
 Applica8ons,	
 2010	

	

[Rossinelli	
 ,	
 2011]	
 	
 “Mesh-­‐par8cle	
 interpola8ons	
 on	
 graphics	
 processing	
 units	
 and	
 mul8core	

central	
 processing	
 units”,	
 D.	
 Rossinelli	
 et	
 al.	
 Phil.	
 Trans.	
 R.	
 Soc,	
 2011	

	

	

9

bandwidth (upward-sloped portion of the line). On the
other hand, if the ratio is large enough the performance will
be bound by the machine’s flop/s performance (horizontal
portion of the line). We can compare the shift between
these two bounds on different machines. The plot suggests
that memory-bound applications would likely achieve a
larger portion of the machine’s flop/s performance on
BG/P: if the application can do a little more than one float-
ing point computation for each byte loaded from DRAM, it
can achieve close to the peak Gflop/s for each core. On the
other hand, applications that can obtain significant reuse of
data loaded from memory might achieve highest perfor-
mance on Ranger despite its comparatively low bandwidth
per core.

We mapped the three applications onto the roofline plot
by calculating the bandwidth utilization to memory for the
three applications. This was done using the PerfSuite
toolkit (Kufrin, 2005) on the NCSA Abe cluster. The appli-
cations were run on small problem sizes using just a single
core of the machine. The flop per byte ratios of the three
applications span a wide range in the plot. The performance
of DNS is likely to be memory bandwidth bound on all
three machines. On the other hand, both NAMD and MILC
have high flop per byte ratios and are unlikely to experience
a significant memory bottleneck. In fact, MILC runs almost
completely in the L1 cache for the small input that was
used. The flop per byte ratios should remain similar for
weak scaling runs, although with strong scaling, the ratios
will change for the three applications. Nevertheless, the
plot allows us to roughly characterize the applications as
being either memory or computation bound.

Communication-heavy applications are typically lim-
ited by the network bandwidth and latency characteristics
of the machine even more than by the peak floating point
performance. We can compare the network bandwidth per
core on these machines. Intrepid, with its 3D Torus topol-
ogy where each node is connected to two neighbors in each
dimension through a dedicated link, has a bandwidth of
1.275 GB/s per core. The peer-to-peer bandwidth available

on Ranger is 1 GB/s. The actual bandwidth available per
core when using all 16 cores per node might be lower. The
bandwidth per core on Jaguar in comparison is 11.4 GB/s
but the limiting factor on Jaguar would be the Hyper Trans-
port link which gives 1.6 GB/s per core.

Dividing the network bandwidth per core by the peak
floating point performance per core in flop/s gives us a use-
ful metric indicating the amount of data that can be trans-
ferred per operation in an application running at peak
performance. The values for BG/P, Ranger and XT4 are
0.375, 0.109 and 1.357 bytes per flop. For network
bandwidth-bound applications, Jaguar would perform the
best, followed by BG/P and then Ranger.

As processor count and complexity of supercomputers
grows over time, power consumption is becoming an
increasingly important factor relating to the cost of execut-
ing code on these systems. Intrepid has the lowest total
power consumption of the three systems considered, at
1.26 MW. Ranger, in comparison, consumes 2.00 MW of
power and Jaguar consumes 1.58 MW. We can estimate the
power efficiency of these systems by dividing the peak
floating point performance by the power draw. This shows
Intrepid as the most power-efficient, yielding 442 Gflop/s
per kilowatt. Ranger, at 290 Gflop/s per kilowatt, is 34%
less power-efficient than Intrepid, while Jaguar, at
165 Gflop/s per kilowatt, is 63% less power-efficient than
the BG/P machine. Table 2 summarizes these results.

Another important factor when evaluating a supercom-
puter is the cost of the machine. Cost is typically consid-
ered in a relative sense, by dividing the purchase price of
a system by its performance. Delivered performance per
dollar would be a better metric for evaluation than the per-
formance per core metric used in this paper. Unfortunately,
cost evaluation is difficult due to shifting or unavailable
prices and varying maintenance costs across machines.
As a result, we decided not to incorporate cost data into this
paper.

3. Micro-benchmarks

Micro-benchmarking results are useful to characterize var-
ious aspects of parallel machines. Not only do they reveal
the actual communication and computation characteristics
of the supercomputers as opposed to the vendor-advertised
values, but they also help to explain performance results
of real applications. We have carefully chosen a range of

Table 2. Comparison of network bandwidth and flop ratings for
the parallel machines.

System

Communication
bandwidth per
core (MB/s)

Communication
bandwidth per
flop (bytes)

Mflop/s
per
Watt

Blue Gene/P 1,275 0.375 357
Ranger 1,000 0.109 217
XT4 11,400 1.357 130

0.1

1

10

100

0.1 1 10 100 1000

G
fl

op
/s

flopper byte

Roofline Model

D
N

S

N
A

M
D

M
IL

C

Ranger
XT4

Blue Gene/P

Fig. 1. Roofline model.

414 The International Journal of High Performance Computing Applications 24(4)

 at ETH Zurich on February 19, 2013hpc.sagepub.comDownloaded from

[Bhatele,	
 2010]	
 [Rossinelli,	
 2011]	

Roofline	
 model	
 tradi:onally	
 used	
 with	
 back-­‐of-­‐the-­‐envelop	
 calcula:ons	

©	
 Victoria	
 Caparrós	

2013	

Measuring	
 T,	
 W	
 and	
 Q	

¢  Measuring	
 run:me	
 T	

§  Time	
 Stamp	
 Counter	

¢  Measuring	
 work	
 W	

§  Composed	
 from	
 scalar	
 and	
 SIMD	
 opera8ons	

	

¢  Measuring	
 memory	
 traffic	
 Q	

	

10

W = Scalar double + SSE double⇥ 2 + AVX double⇥ 4

W = Scalar single + SSE single⇥ 4 + AVX single⇥ 8

•  Write-­‐back	
 traffic	

•  Prefetched	
 data	

•  LLC	
 misses	

•  Streaming	
 (non-­‐temporal)	
 opera8ons	

•  Page	
 table	
 traffic	

Processor	

Die	

Main	

Memory	

P	
 =	
 	

T	

W	

I	
 =	
 	
 Q	

W	

©	
 Victoria	
 Caparrós	

2013	

…	
 But	
 Measuring	
 is	
 Hard	

¢  Dynamic	
 Frequency	
 Scaling	

¢  Dead	
 Code	
 Elimina:on	

¢  Ini:aliza:on	

¢  Alignment	

¢  Asynchronous	
 calls	

¢  Hardware	
 Prefetcher	

11

If	
 any	
 of	
 these	
 factors	
 is	
 not	
 controlled,	
 measurements	
 become	
 meaningless	

©	
 Victoria	
 Caparrós	

2013	

Measurement	
 Strategy	

¢  Repeat	
 the	
 execu:on	
 (nr_of_repeats)	
 	

§  Median,	
 25%	
 and	
 75%	
 percen8le	

¢  Run	
 the	
 code	
 several	
 :mes	
 un:l	
 execu:on	
 gets	
 long	
 enough	
 (nr_runs)	

§  Cold	
 cache	
 measurements	
 require	
 special	
 treatment	

12

Replica	
 of	
 input	
 data	
 [5]	
 	

Replica	
 of	
 input	
 data	
 [9]	
 	

Replica	
 of	
 input	
 data	
 [7]	
 	

Replica	
 of	
 input	
 data	
 [3]	
 	

Replica	
 of	
 input	
 data	
 [8]	
 	

Replica	
 of	
 input	
 data	
 [0]	
 	

Replica	
 of	
 input	
 data	
 [4]	
 	

Replica	
 of	
 input	
 data	
 [1]	
 	

Replica	
 of	
 input	
 data	
 [6]	
 	

Replica	
 of	
 input	
 data	
 [2]	
 	

for (nr_of_repeats){

 start_measure()

 target_code(input_data)

 stop_measure()

}

for (nr_of_repeats){

 start_measure()

 for (nr_of_runs){

 target_code(input_data)

 }

 stop_measure()

}

Allocated	
 memory	
 (e.g.,	
 nr_runs	
 =	
 10)	

for (nr_of_repeats){

 start_measure()

 for (nr_of_runs){

 target_code(replica_of_data)

 }

 stop_measure()

}

©	
 Victoria	
 Caparrós	

2013	

Experimental	
 Setup	

¢  Intel	
 PCM	
 for	
 accessing	
 hardware	
 performance	
 counters	

¢  Different	
 microarchitectures	
 and	
 opera:ng	
 systems	

CPU Model Xeon E5-2660 Xeon X5680 Core i7-3930K

Microarch. Sandy Bridge EP Westmere EP Sandy Bridge E

ISA AVX SSE 4.2 AVX

Cores 8 6 6

Sockets 2 2 1

Frequency [GHz] 2.2 3.3 3.2

⇡ per core [Flops/cycle] 8 4 8

� one/all cores [Bytes/cycle] 6.7/14.1 6.7/13.9 6.2/10.4

Operating System RHEL Server 6 RHEL Server 6 Ubuntu 12.10 Windows 7

13

©	
 Victoria	
 Caparrós	

2013	

BLAS function W (n) Qr(n) Qw(n) Q(n) = Qr+w(n) Ir(n) I(n) = Ir+w(n)

daxpy y ↵x+ y = 2n � 16n � 8n � 24n  1
8  1

12

dgemv y ↵Ax+ �y = 2n2 + 2n � 8n2 + 16n � 8n � 8n2 + 24n  n+1
4n+8 ⇡

1
4  n+1

4n+12 ⇡
1
4

dgemm C ↵AB + �C = 2n3 + 2n2 � 24n2 � 8n2 � 32n2  n+1
12  n+1

16

TABLE I
OPERATIONAL INTENSITY ANALYSIS FOR SOME BLAS1–3 ROUTINES.

III. METHODOLOGY

To construct roofline plots (e.g., Fig. 1), we need to measure
three code-specific quantities: W and Q to compute I , and T
to also compute P . In this section we first describe our general
measuring strategy, and then explain how each quantity W ,
Q, and T is obtained using performance counters. We explain
validation and discuss caveats. Finally, we briefly explain how
⇡ and � are obtained.

A. Measuring strategy
At a high level of abstraction, our measuring strategy has

the form:
nr_of_runs = get_nr_of_runs(target_code, data)

for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(data)

}

stop_measure()

}

The approach uses two loops. The outer loop repeats the
measurement for statistical purposes to return median and
quartile information. We choose nr_of_repeats = 20 in all
experiments. The final result is the median. In the plots we also
show, for each point, the quartiles (25th and 75

th percentiles)
along both axes (P and I) through (vertical and horizontal)
lines of appropriate length.

The inner loop reduces the error induced by the measur-
ing overhead [17], [32]. The number of runs nr_of_runs

is determined by an auxiliary routine that ensures that the
total measurement time is larger than a certain threshold; we
determined that for our machines a threshold of a 10

8 cycles
is sufficient.

The sketched strategy produces warm cache measurements.
Cold cache measurement. Cold cache measurements ex-

pose additional information since they include all compulsory
cache misses. A naive approach would flush the cache before
each computation (target_code(data) in the code above).
The flush routines could be:

• Using the clflush instruction if the data addresses are
available.

• Flushing up to LLC by reading a large buffer.
• Flushing the TLB by accessing data across many pages.
• Flushing the instruction cache by running code as large

as the cache.
Unfortunately, for small sizes the expensive flush invalidates
the measurement. For the cold cache experiments within this

paper, we use a different approach, similar to the one described
in [32], that takes the form:
for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(replica_of_data[run])

}

stop_measure()

}

Note that we are not using any flushing. Instead, we change
the working data set in every iteration, thus making sure that it
is not cache resident when the target code executes. To ensure
cold cache between repetitions, we enforce a lower limit on
the number of runs chosen, such that (� is the LLC size)

sizeof(data) ⇥ runs � � ⇥ associativity.

Further, the data (arrays of doubles in our experiments) for
each iteration is allocated separately (each aligned to cache
line boundaries) to eliminate the effect of prefetching from
one iteration to the next. We limit the size of data replication
to avoid excessive memory consumption and unwanted side
effects that may come with it. This limit is implemented as
...

target_code(replica_of_data[run%(limit)])

...

where limit is chosen similar to the lower bound for the runs:

sizeof(data) ⇥ limit � � ⇥ associativity.

Note that while this strategy enables measurements with cold
input/output data, it cannot control other cached information,
such as the target code and data allocated by the target code.

Cold cache and write-back cache. When dealing with a
write-back cache, data up to the size of the LLC is potentially
not transferred back to memory before the measurement ends.
Also, we might measure write traffic not due to our code, but
evicted in order to provide space for our data. We resolve this
by executing the target code before starting our measurements
such that it fills the LLC with data. Once the measurement
starts, the initial evictions compensate the data that are not
written back to memory at the end of the measurements.

B. Measuring Work W
Counters for floating point operations. Table II lists

the counters used for measuring floating point operations.
These counters are only incremented when either arithmetic or
comparison instructions are issued. Memory instructions, such
as loads, stores, and shuffles are ignored by the counters. For

BLAS	
 Overview	

0.1 1 10

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000
2440000

100

2800

100

2800
Peak � seq. (8.0 Flops/Cycle)

Peak � par. (48.0 Flops/Cycle)

R
ea

d/
w

ri
te

 ß
 s
eq

. (
6.

2
Byt

es
/C

yc
le

)

R
ea

d/
w

ri
te

 ß
 p

ar
.(1

0.
31

Byt
es

/C
yc

le
)

daxpy

dgemv

dgemm

14

©	
 Victoria	
 Caparrós	

2013	

BLAS	
 Overview	
 —	
 Read/Write-­‐Only	
 BW	

0.1 1 10 100

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000
2440000

100

2800

100

2800

daxpy

dgemv

dgemm

R
e
a
d
 ß

 (
5
.0

B
y
te

s/
C

y
c
le

)

Peak � (8.0 Flops/Cycle)

15

0.1 1 10 100

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000

2440000

100

2800

100

2800

W
ri
te

 ß
 (
3
.8

B
y
te

s/
C

y
c
le

)

daxpy

dgemv

dgemm

Peak � (8.0 Flops/Cycle)

BLAS function W (n) Qr(n) Qw(n) Q(n) = Qr+w(n) Ir(n) I(n) = Ir+w(n)

daxpy y ↵x+ y = 2n � 16n � 8n � 24n  1
8  1

12

dgemv y ↵Ax+ �y = 2n2 + 2n � 8n2 + 16n � 8n � 8n2 + 24n  n+1
4n+8 ⇡

1
4  n+1

4n+12 ⇡
1
4

dgemm C ↵AB + �C = 2n3 + 2n2 � 24n2 � 8n2 � 32n2  n+1
12  n+1

16

TABLE I
OPERATIONAL INTENSITY ANALYSIS FOR SOME BLAS1–3 ROUTINES.

III. METHODOLOGY

To construct roofline plots (e.g., Fig. 1), we need to measure
three code-specific quantities: W and Q to compute I , and T
to also compute P . In this section we first describe our general
measuring strategy, and then explain how each quantity W ,
Q, and T is obtained using performance counters. We explain
validation and discuss caveats. Finally, we briefly explain how
⇡ and � are obtained.

A. Measuring strategy
At a high level of abstraction, our measuring strategy has

the form:
nr_of_runs = get_nr_of_runs(target_code, data)

for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(data)

}

stop_measure()

}

The approach uses two loops. The outer loop repeats the
measurement for statistical purposes to return median and
quartile information. We choose nr_of_repeats = 20 in all
experiments. The final result is the median. In the plots we also
show, for each point, the quartiles (25th and 75

th percentiles)
along both axes (P and I) through (vertical and horizontal)
lines of appropriate length.

The inner loop reduces the error induced by the measur-
ing overhead [17], [32]. The number of runs nr_of_runs

is determined by an auxiliary routine that ensures that the
total measurement time is larger than a certain threshold; we
determined that for our machines a threshold of a 10

8 cycles
is sufficient.

The sketched strategy produces warm cache measurements.
Cold cache measurement. Cold cache measurements ex-

pose additional information since they include all compulsory
cache misses. A naive approach would flush the cache before
each computation (target_code(data) in the code above).
The flush routines could be:

• Using the clflush instruction if the data addresses are
available.

• Flushing up to LLC by reading a large buffer.
• Flushing the TLB by accessing data across many pages.
• Flushing the instruction cache by running code as large

as the cache.
Unfortunately, for small sizes the expensive flush invalidates
the measurement. For the cold cache experiments within this

paper, we use a different approach, similar to the one described
in [32], that takes the form:
for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(replica_of_data[run])

}

stop_measure()

}

Note that we are not using any flushing. Instead, we change
the working data set in every iteration, thus making sure that it
is not cache resident when the target code executes. To ensure
cold cache between repetitions, we enforce a lower limit on
the number of runs chosen, such that (� is the LLC size)

sizeof(data) ⇥ runs � � ⇥ associativity.

Further, the data (arrays of doubles in our experiments) for
each iteration is allocated separately (each aligned to cache
line boundaries) to eliminate the effect of prefetching from
one iteration to the next. We limit the size of data replication
to avoid excessive memory consumption and unwanted side
effects that may come with it. This limit is implemented as
...

target_code(replica_of_data[run%(limit)])

...

where limit is chosen similar to the lower bound for the runs:

sizeof(data) ⇥ limit � � ⇥ associativity.

Note that while this strategy enables measurements with cold
input/output data, it cannot control other cached information,
such as the target code and data allocated by the target code.

Cold cache and write-back cache. When dealing with a
write-back cache, data up to the size of the LLC is potentially
not transferred back to memory before the measurement ends.
Also, we might measure write traffic not due to our code, but
evicted in order to provide space for our data. We resolve this
by executing the target code before starting our measurements
such that it fills the LLC with data. Once the measurement
starts, the initial evictions compensate the data that are not
written back to memory at the end of the measurements.

B. Measuring Work W
Counters for floating point operations. Table II lists

the counters used for measuring floating point operations.
These counters are only incremented when either arithmetic or
comparison instructions are issued. Memory instructions, such
as loads, stores, and shuffles are ignored by the counters. For

©	
 Victoria	
 Caparrós	

2013	

BLAS	
 Overview	
 —	
 Parallel	

0.1 1 10

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000

2440000
100

2800

100

2800

daxpy
dgemv

dgemm

Peak � par. (48.0 Flops/Cycle)

Peak � seq. (8.0 Flops/Cycle) R
ea

d/
w

ri
te

 ß
 p

ar
.(1

0.
31

Byt
es

/C
yc

le
)

R
ea

d/
w

ri
te

 ß
 s
eq

. (
6.

2
Byt

es
/C

yc
le

)

16

©	
 Victoria	
 Caparrós	

2013	

0.1 1 10 100

Operational Intensity [Flops/Byte]

1

10

100

Performance [Flops/Cycle]

2800

100
2800

100

2800

100

2800

2800

100

2800

Triple loop

Six fold loop

MKL seq.

MKL par.

ATLAS seq.

ATLAS par.

Peak � par. (128.0 Flops/Cycle)

Peak � seq. (8.0 Flops/Cycle)

Rea
d/w

rit
e

ß p
ar

. (
14 B

yt
es

/C
yc

le)

Rea
d/w

rit
e

ß se
q. (

6.7
 B

yt
es

/C
yc

le)

MMM	
 Overview	
 —	
 Op:miza:on	
 Study	

17

©	
 Victoria	
 Caparrós	

2013	

Conclusion	

¢  New	
 insights	
 into	

performance	
 bo_lenecks	

	

	

¢  Robust	
 measurement	

strategy	
 required	

	

18

0.1 1 10

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

Peak Performance (8.0 F/C)

dgemv

dgemm

R
ea

d
/w

ri
te

 ß
 s
eq

.
(6

.2
B
yt

es
/C

yc
le
)

100

2800

100

2800

	

¢  Yet,	
 it	
 is	
 a	
 model	
 and	
 has	
 some	
 limita:ons	

§  Assumes	
 complete	
 overlap	
 of	
 computa:on	
 and	
 communica:on	

§  Does	
 not	
 consider	
 addi:onal	
 bo_lenecks	

Backup	
 Slides	

©	
 Victoria	
 Caparrós	

2013	

Performance	
 Counters	
 Table	

Event Event Mask Mnemonic

Flops

Sandy / Ivy Bridge
Scalar single FP COMP OPS EXE.SSE FP SCALAR SINGLE
SSE single FP COMP OPS EXE.SSE PACKED SINGLE
AVX single SIMD FP 256.PACKED SINGLE
Scalar double FP COMP OPS EXE.SSE FP SCALAR DOUBLE
SSE double FP COMP OPS EXE.SSE PACKED DOUBLE
AVX double SIMD FP 256.PACKED DOUBLE
Westmere
Scalar FP COMP OPS EXE.SSE FP SCALAR
SSE FP COMP OPS EXE.SSE FP PACKED

Memory ops

Sandy / Ivy Bridge
Cache lines reads UNC CBO CACHE LOOKUP.I

UNC CBO CACHE LOOKUP.ANY REQUEST FILTER
Cache lines writes UNC ARB TRK REQUEST.EVICTIONS
Westmere-EP
Cache lines reads UNC QMC NORMAL READS.ANY
Cache lines writes UNC QMC WRITES.FULL.ANY
Sandy Bridge-EP
Cache lines reads UNC IMC NORMAL READS.ANY
Cache lines writes UNC IMC WRITES.FULL.ANY

Timers

Core Cycles UnHalted Core Cycles
Reference Cycles UnHalted Reference Cycles
Time stamp counter IA32 TIME STAMP COUNTER

20

