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Measuring	  Performance	  —	  Run:me	  	  
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Measuring	  Performance	  —	  Flops/Cycle	  
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Measuring	  Performance	  —	  Roofline	  Plot	  
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Goals:	  
¢  Build	  roofline	  plots	  with	  accurate	  measurements	  using	  hardware	  

performance	  counters	  

¢  Analyze	  roofline	  plots	  to	  understand	  performance	  bo6lenecks	  and	  
guide	  the	  op8miza8on	  process	  
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Outline	  
¢  Mo:va:on	  

¢  Introduc:on	  to	  the	  roofline	  model	  

¢  How	  to	  measure	  P	  and	  I	  using	  hardware	  performance	  counters	  

¢  Measuring	  strategy	  

¢  Valida:on	  and	  results	  

6 
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Roofline	  Model	  —	  Applica:on’s	  Performance	  
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P	  =	  	  
T	  
W	  

I	  =	  	  Q	  
W	  

W	  =	  Floa8ng-‐point	  op	  count	  [Flops]	  

T	  	  =	  Execu8on	  8me	  [Cycles]	  

P	  	  =	  Performance	  [Flops/Cycle]	  

Q	  =	  Bytes	  transferred	  to/from	  DRAM	  [Bytes]	  

I	  =	  Opera8onal	  Intensity	  [Flops/Byte]	  

Some	  func8on	  	  
run	  on	  some	  input	  
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P = I�

Compute	  Bound	  Memory	  Bound	  

Roofline	  Model	  —	  Performance	  Bounds	  
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Users	  of	  the	  Roofline	  Model	  
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bandwidth (upward-sloped portion of the line). On the
other hand, if the ratio is large enough the performance will
be bound by the machine’s flop/s performance (horizontal
portion of the line). We can compare the shift between
these two bounds on different machines. The plot suggests
that memory-bound applications would likely achieve a
larger portion of the machine’s flop/s performance on
BG/P: if the application can do a little more than one float-
ing point computation for each byte loaded from DRAM, it
can achieve close to the peak Gflop/s for each core. On the
other hand, applications that can obtain significant reuse of
data loaded from memory might achieve highest perfor-
mance on Ranger despite its comparatively low bandwidth
per core.

We mapped the three applications onto the roofline plot
by calculating the bandwidth utilization to memory for the
three applications. This was done using the PerfSuite
toolkit (Kufrin, 2005) on the NCSA Abe cluster. The appli-
cations were run on small problem sizes using just a single
core of the machine. The flop per byte ratios of the three
applications span a wide range in the plot. The performance
of DNS is likely to be memory bandwidth bound on all
three machines. On the other hand, both NAMD and MILC
have high flop per byte ratios and are unlikely to experience
a significant memory bottleneck. In fact, MILC runs almost
completely in the L1 cache for the small input that was
used. The flop per byte ratios should remain similar for
weak scaling runs, although with strong scaling, the ratios
will change for the three applications. Nevertheless, the
plot allows us to roughly characterize the applications as
being either memory or computation bound.

Communication-heavy applications are typically lim-
ited by the network bandwidth and latency characteristics
of the machine even more than by the peak floating point
performance. We can compare the network bandwidth per
core on these machines. Intrepid, with its 3D Torus topol-
ogy where each node is connected to two neighbors in each
dimension through a dedicated link, has a bandwidth of
1.275 GB/s per core. The peer-to-peer bandwidth available

on Ranger is 1 GB/s. The actual bandwidth available per
core when using all 16 cores per node might be lower. The
bandwidth per core on Jaguar in comparison is 11.4 GB/s
but the limiting factor on Jaguar would be the Hyper Trans-
port link which gives 1.6 GB/s per core.

Dividing the network bandwidth per core by the peak
floating point performance per core in flop/s gives us a use-
ful metric indicating the amount of data that can be trans-
ferred per operation in an application running at peak
performance. The values for BG/P, Ranger and XT4 are
0.375, 0.109 and 1.357 bytes per flop. For network
bandwidth-bound applications, Jaguar would perform the
best, followed by BG/P and then Ranger.

As processor count and complexity of supercomputers
grows over time, power consumption is becoming an
increasingly important factor relating to the cost of execut-
ing code on these systems. Intrepid has the lowest total
power consumption of the three systems considered, at
1.26 MW. Ranger, in comparison, consumes 2.00 MW of
power and Jaguar consumes 1.58 MW. We can estimate the
power efficiency of these systems by dividing the peak
floating point performance by the power draw. This shows
Intrepid as the most power-efficient, yielding 442 Gflop/s
per kilowatt. Ranger, at 290 Gflop/s per kilowatt, is 34%
less power-efficient than Intrepid, while Jaguar, at
165 Gflop/s per kilowatt, is 63% less power-efficient than
the BG/P machine. Table 2 summarizes these results.

Another important factor when evaluating a supercom-
puter is the cost of the machine. Cost is typically consid-
ered in a relative sense, by dividing the purchase price of
a system by its performance. Delivered performance per
dollar would be a better metric for evaluation than the per-
formance per core metric used in this paper. Unfortunately,
cost evaluation is difficult due to shifting or unavailable
prices and varying maintenance costs across machines.
As a result, we decided not to incorporate cost data into this
paper.

3. Micro-benchmarks

Micro-benchmarking results are useful to characterize var-
ious aspects of parallel machines. Not only do they reveal
the actual communication and computation characteristics
of the supercomputers as opposed to the vendor-advertised
values, but they also help to explain performance results
of real applications. We have carefully chosen a range of

Table 2. Comparison of network bandwidth and flop ratings for
the parallel machines.

System

Communication
bandwidth per
core (MB/s)

Communication
bandwidth per
flop (bytes)

Mflop/s
per
Watt

Blue Gene/P 1,275 0.375 357
Ranger 1,000 0.109 217
XT4 11,400 1.357 130
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Fig. 1. Roofline model.
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Measuring	  T,	  W	  and	  Q	  

¢  Measuring	  run:me	  T	  
§  Time	  Stamp	  Counter	  

¢  Measuring	  work	  W	  
§  Composed	  from	  scalar	  and	  SIMD	  opera8ons	  

	  

¢  Measuring	  memory	  traffic	  Q	  
	  

10 

W = Scalar double + SSE double⇥ 2 + AVX double⇥ 4

W = Scalar single + SSE single⇥ 4 + AVX single⇥ 8

•  Write-‐back	  traffic	  

•  Prefetched	  data	  
•  LLC	  misses	  

•  Streaming	  (non-‐temporal)	  opera8ons	  
•  Page	  table	  traffic	  

Processor	  
Die	  

Main	  
Memory	  

P	  =	  	  
T	  
W	  

I	  =	  	  Q	  
W	  
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…	  But	  Measuring	  is	  Hard	  

¢  Dynamic	  Frequency	  Scaling	  

¢  Dead	  Code	  Elimina:on	  

¢  Ini:aliza:on	  

¢  Alignment	  

¢  Asynchronous	  calls	  

¢  Hardware	  Prefetcher	  

11 

If	  any	  of	  these	  factors	  is	  not	  controlled,	  measurements	  become	  meaningless	  
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Measurement	  Strategy	  

¢  Repeat	  the	  execu:on	  (nr_of_repeats)	  	  
§  Median,	  25%	  and	  75%	  percen8le	  

¢  Run	  the	  code	  several	  :mes	  un:l	  execu:on	  gets	  long	  enough	  (nr_runs)	  
§  Cold	  cache	  measurements	  require	  special	  treatment	  

12 

Replica	  of	  input	  data	  [5]	  	  

Replica	  of	  input	  data	  [9]	  	  

Replica	  of	  input	  data	  [7]	  	  

Replica	  of	  input	  data	  [3]	  	  

Replica	  of	  input	  data	  [8]	  	  

Replica	  of	  input	  data	  [0]	  	  

Replica	  of	  input	  data	  [4]	  	  

Replica	  of	  input	  data	  [1]	  	  

Replica	  of	  input	  data	  [6]	  	  

Replica	  of	  input	  data	  [2]	  	  

for (nr_of_repeats){ 

    start_measure() 

  

      target_code(input_data) 

     

    stop_measure() 

} 

for (nr_of_repeats){ 

    start_measure() 

    for (nr_of_runs){ 

      target_code(input_data) 

    } 

    stop_measure() 

} 

Allocated	  memory	  (e.g.,	  nr_runs	  =	  10)	  

for (nr_of_repeats){ 

    start_measure() 

    for (nr_of_runs){ 

      target_code(replica_of_data) 

    } 

    stop_measure() 

} 
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Experimental	  Setup	  

¢  Intel	  PCM	  for	  accessing	  hardware	  performance	  counters	  

¢  Different	  microarchitectures	  and	  opera:ng	  systems	  

CPU Model Xeon E5-2660 Xeon X5680 Core i7-3930K

Microarch. Sandy Bridge EP Westmere EP Sandy Bridge E

ISA AVX SSE 4.2 AVX

Cores 8 6 6

Sockets 2 2 1

Frequency [GHz] 2.2 3.3 3.2

⇡ per core [Flops/cycle] 8 4 8

� one/all cores [Bytes/cycle] 6.7/14.1 6.7/13.9 6.2/10.4

Operating System RHEL Server 6 RHEL Server 6 Ubuntu 12.10 Windows 7

13 
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BLAS function W (n) Qr(n) Qw(n) Q(n) = Qr+w(n) Ir(n) I(n) = Ir+w(n)

daxpy y ↵x+ y = 2n � 16n � 8n � 24n  1
8  1

12

dgemv y ↵Ax+ �y = 2n2 + 2n � 8n2 + 16n � 8n � 8n2 + 24n  n+1
4n+8 ⇡

1
4  n+1

4n+12 ⇡
1
4

dgemm C  ↵AB + �C = 2n3 + 2n2 � 24n2 � 8n2 � 32n2  n+1
12  n+1

16

TABLE I
OPERATIONAL INTENSITY ANALYSIS FOR SOME BLAS1–3 ROUTINES.

III. METHODOLOGY

To construct roofline plots (e.g., Fig. 1), we need to measure
three code-specific quantities: W and Q to compute I , and T
to also compute P . In this section we first describe our general
measuring strategy, and then explain how each quantity W ,
Q, and T is obtained using performance counters. We explain
validation and discuss caveats. Finally, we briefly explain how
⇡ and � are obtained.

A. Measuring strategy
At a high level of abstraction, our measuring strategy has

the form:
nr_of_runs = get_nr_of_runs(target_code, data)

for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(data)

}

stop_measure()

}

The approach uses two loops. The outer loop repeats the
measurement for statistical purposes to return median and
quartile information. We choose nr_of_repeats = 20 in all
experiments. The final result is the median. In the plots we also
show, for each point, the quartiles (25th and 75

th percentiles)
along both axes (P and I) through (vertical and horizontal)
lines of appropriate length.

The inner loop reduces the error induced by the measur-
ing overhead [17], [32]. The number of runs nr_of_runs

is determined by an auxiliary routine that ensures that the
total measurement time is larger than a certain threshold; we
determined that for our machines a threshold of a 10

8 cycles
is sufficient.

The sketched strategy produces warm cache measurements.
Cold cache measurement. Cold cache measurements ex-

pose additional information since they include all compulsory
cache misses. A naive approach would flush the cache before
each computation (target_code(data) in the code above).
The flush routines could be:

• Using the clflush instruction if the data addresses are
available.

• Flushing up to LLC by reading a large buffer.
• Flushing the TLB by accessing data across many pages.
• Flushing the instruction cache by running code as large

as the cache.
Unfortunately, for small sizes the expensive flush invalidates
the measurement. For the cold cache experiments within this

paper, we use a different approach, similar to the one described
in [32], that takes the form:
for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(replica_of_data[run])

}

stop_measure()

}

Note that we are not using any flushing. Instead, we change
the working data set in every iteration, thus making sure that it
is not cache resident when the target code executes. To ensure
cold cache between repetitions, we enforce a lower limit on
the number of runs chosen, such that (� is the LLC size)

sizeof(data) ⇥ runs � � ⇥ associativity.

Further, the data (arrays of doubles in our experiments) for
each iteration is allocated separately (each aligned to cache
line boundaries) to eliminate the effect of prefetching from
one iteration to the next. We limit the size of data replication
to avoid excessive memory consumption and unwanted side
effects that may come with it. This limit is implemented as
...

target_code(replica_of_data[run%(limit)])

...

where limit is chosen similar to the lower bound for the runs:

sizeof(data) ⇥ limit � � ⇥ associativity.

Note that while this strategy enables measurements with cold
input/output data, it cannot control other cached information,
such as the target code and data allocated by the target code.

Cold cache and write-back cache. When dealing with a
write-back cache, data up to the size of the LLC is potentially
not transferred back to memory before the measurement ends.
Also, we might measure write traffic not due to our code, but
evicted in order to provide space for our data. We resolve this
by executing the target code before starting our measurements
such that it fills the LLC with data. Once the measurement
starts, the initial evictions compensate the data that are not
written back to memory at the end of the measurements.

B. Measuring Work W
Counters for floating point operations. Table II lists

the counters used for measuring floating point operations.
These counters are only incremented when either arithmetic or
comparison instructions are issued. Memory instructions, such
as loads, stores, and shuffles are ignored by the counters. For

BLAS	  Overview	  
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BLAS	  Overview	  —	  Read/Write-‐Only	  BW	  

0.1 1 10 100

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000
2440000

100

2800

100

2800

daxpy

dgemv

dgemm

R
e
a
d
 ß

 (
5
.0

B
y
te

s/
C

y
c
le

)

Peak �  (8.0 Flops/Cycle)

15 

0.1 1 10 100

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000

2440000

100

2800

100

2800

W
ri
te

 ß
 (
3
.8

B
y
te

s/
C

y
c
le

)

daxpy

dgemv

dgemm

Peak � (8.0 Flops/Cycle)

BLAS function W (n) Qr(n) Qw(n) Q(n) = Qr+w(n) Ir(n) I(n) = Ir+w(n)

daxpy y ↵x+ y = 2n � 16n � 8n � 24n  1
8  1

12

dgemv y ↵Ax+ �y = 2n2 + 2n � 8n2 + 16n � 8n � 8n2 + 24n  n+1
4n+8 ⇡

1
4  n+1

4n+12 ⇡
1
4
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TABLE I
OPERATIONAL INTENSITY ANALYSIS FOR SOME BLAS1–3 ROUTINES.

III. METHODOLOGY

To construct roofline plots (e.g., Fig. 1), we need to measure
three code-specific quantities: W and Q to compute I , and T
to also compute P . In this section we first describe our general
measuring strategy, and then explain how each quantity W ,
Q, and T is obtained using performance counters. We explain
validation and discuss caveats. Finally, we briefly explain how
⇡ and � are obtained.

A. Measuring strategy
At a high level of abstraction, our measuring strategy has

the form:
nr_of_runs = get_nr_of_runs(target_code, data)

for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(data)

}

stop_measure()

}

The approach uses two loops. The outer loop repeats the
measurement for statistical purposes to return median and
quartile information. We choose nr_of_repeats = 20 in all
experiments. The final result is the median. In the plots we also
show, for each point, the quartiles (25th and 75

th percentiles)
along both axes (P and I) through (vertical and horizontal)
lines of appropriate length.

The inner loop reduces the error induced by the measur-
ing overhead [17], [32]. The number of runs nr_of_runs

is determined by an auxiliary routine that ensures that the
total measurement time is larger than a certain threshold; we
determined that for our machines a threshold of a 10

8 cycles
is sufficient.

The sketched strategy produces warm cache measurements.
Cold cache measurement. Cold cache measurements ex-

pose additional information since they include all compulsory
cache misses. A naive approach would flush the cache before
each computation (target_code(data) in the code above).
The flush routines could be:

• Using the clflush instruction if the data addresses are
available.

• Flushing up to LLC by reading a large buffer.
• Flushing the TLB by accessing data across many pages.
• Flushing the instruction cache by running code as large

as the cache.
Unfortunately, for small sizes the expensive flush invalidates
the measurement. For the cold cache experiments within this

paper, we use a different approach, similar to the one described
in [32], that takes the form:
for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(replica_of_data[run])

}

stop_measure()

}

Note that we are not using any flushing. Instead, we change
the working data set in every iteration, thus making sure that it
is not cache resident when the target code executes. To ensure
cold cache between repetitions, we enforce a lower limit on
the number of runs chosen, such that (� is the LLC size)

sizeof(data) ⇥ runs � � ⇥ associativity.

Further, the data (arrays of doubles in our experiments) for
each iteration is allocated separately (each aligned to cache
line boundaries) to eliminate the effect of prefetching from
one iteration to the next. We limit the size of data replication
to avoid excessive memory consumption and unwanted side
effects that may come with it. This limit is implemented as
...

target_code(replica_of_data[run%(limit)])

...

where limit is chosen similar to the lower bound for the runs:

sizeof(data) ⇥ limit � � ⇥ associativity.

Note that while this strategy enables measurements with cold
input/output data, it cannot control other cached information,
such as the target code and data allocated by the target code.

Cold cache and write-back cache. When dealing with a
write-back cache, data up to the size of the LLC is potentially
not transferred back to memory before the measurement ends.
Also, we might measure write traffic not due to our code, but
evicted in order to provide space for our data. We resolve this
by executing the target code before starting our measurements
such that it fills the LLC with data. Once the measurement
starts, the initial evictions compensate the data that are not
written back to memory at the end of the measurements.

B. Measuring Work W
Counters for floating point operations. Table II lists

the counters used for measuring floating point operations.
These counters are only incremented when either arithmetic or
comparison instructions are issued. Memory instructions, such
as loads, stores, and shuffles are ignored by the counters. For
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BLAS	  Overview	  —	  Parallel	  
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Conclusion	  

¢  New	  insights	  into	  
performance	  bo_lenecks	  

	  
	  

¢  Robust	  measurement	  
strategy	  required	  
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¢  Yet,	  it	  is	  a	  model	  and	  has	  some	  limita:ons	  
§  Assumes	  complete	  overlap	  of	  computa:on	  and	  communica:on	  
§  Does	  not	  consider	  addi:onal	  bo_lenecks	  
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Performance	  Counters	  Table	  
Event Event Mask Mnemonic

Flops

Sandy / Ivy Bridge
Scalar single FP COMP OPS EXE.SSE FP SCALAR SINGLE
SSE single FP COMP OPS EXE.SSE PACKED SINGLE
AVX single SIMD FP 256.PACKED SINGLE
Scalar double FP COMP OPS EXE.SSE FP SCALAR DOUBLE
SSE double FP COMP OPS EXE.SSE PACKED DOUBLE
AVX double SIMD FP 256.PACKED DOUBLE
Westmere
Scalar FP COMP OPS EXE.SSE FP SCALAR
SSE FP COMP OPS EXE.SSE FP PACKED

Memory ops

Sandy / Ivy Bridge
Cache lines reads UNC CBO CACHE LOOKUP.I

UNC CBO CACHE LOOKUP.ANY REQUEST FILTER
Cache lines writes UNC ARB TRK REQUEST.EVICTIONS
Westmere-EP
Cache lines reads UNC QMC NORMAL READS.ANY
Cache lines writes UNC QMC WRITES.FULL.ANY
Sandy Bridge-EP
Cache lines reads UNC IMC NORMAL READS.ANY
Cache lines writes UNC IMC WRITES.FULL.ANY

Timers

Core Cycles UnHalted Core Cycles
Reference Cycles UnHalted Reference Cycles
Time stamp counter IA32 TIME STAMP COUNTER
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