
Georg	 Ofenbeck	
Ruedi	 Steinman	
Victoria	 Caparrós	 Cabezas	
Daniele	 Spampinato	 	
Markus	 Püschel	

Applying	 the	 Roofline	 Model	

©	 Victoria	 Caparrós	
2013	

Measuring	 Performance	 —	 Run:me	 	

2

100 400 700 1000 1300 1600 1900 2200 2500 2800
Problem Size

0.0001

0.001

0.01

0.1

1

Runtime [seconds]

dgemv

dgemm

©	 Victoria	 Caparrós	
2013	

Measuring	 Performance	 —	 Flops/Cycle	

3

100 400 700 1000 1300 1600 1900 2200 2500 2800
Problem Size

10

Performance [Flops/Cycle]

dgemv

dgemm

1

Peak � seq. (8.0 Flops/Cycle)

©	 Victoria	 Caparrós	
2013	

Measuring	 Performance	 —	 Roofline	 Plot	

4

0.1 1 10

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

Peak Performance (8.0 F/C)

dgemv

dgemm

R
ea

d
/w

ri
te

 ß
 s
eq

.
(6

.2
B
yt

es
/C

yc
le
)

100

2800

100

2800

©	 Victoria	 Caparrós	
2013	

Goals:	
¢  Build	 roofline	 plots	 with	 accurate	 measurements	 using	 hardware	

performance	 counters	

¢  Analyze	 roofline	 plots	 to	 understand	 performance	 bo6lenecks	 and	
guide	 the	 op8miza8on	 process	

©	 Victoria	 Caparrós	
2013	

Outline	
¢  Mo:va:on	

¢  Introduc:on	 to	 the	 roofline	 model	

¢  How	 to	 measure	 P	 and	 I	 using	 hardware	 performance	 counters	

¢  Measuring	 strategy	

¢  Valida:on	 and	 results	

6

©	 Victoria	 Caparrós	
2013	

Roofline	 Model	 —	 Applica:on’s	 Performance	

Opera8onal	 Intensity	
[Flops/Byte]	

Performance 	

[Flops/Cycle]	

4	

2	

1	

1/4	

1/2	

1/4	
 1/2	
 1	
 2	
 4	
 8	

7

16	

[Williams,	 2009]	 “Roofline:	 An	 InsighKul	 Visual	 Performance	 Model	 for	 Mul8core”,	
S.	 Williams	 et	 al.	 Communica8ons	 of	 the	 ACM,	 2009	

32	

P	 =	 	
T	
W	

I	 =	 	 Q	
W	

W	 =	 Floa8ng-‐point	 op	 count	 [Flops]	

T	 	 =	 Execu8on	 8me	 [Cycles]	

P	 	 =	 Performance	 [Flops/Cycle]	

Q	 =	 Bytes	 transferred	 to/from	 DRAM	 [Bytes]	

I	 =	 Opera8onal	 Intensity	 [Flops/Byte]	

Some	 func8on	 	
run	 on	 some	 input	

©	 Victoria	 Caparrós	
2013	

P = I�

Compute	 Bound	 Memory	 Bound	

Roofline	 Model	 —	 Performance	 Bounds	

Opera8onal	 Intensity	
[Flops/Byte]	

Performance 	

[Flops/Cycle]	

4	

2	

1	

1/4	

1/2	

1/4	
 1/2	
 1	
 2	
 4	
 8	

P = ⇡

8

Some	 func8on	 	
run	 on	 some	 input	

16	

[Williams,	 2009]	 “Roofline:	 An	 InsighKul	 Visual	 Performance	 Model	 for	 Mul8core”,	 S.	 Williams	
et	 al.	 Communica8ons	 of	 the	 ACM,	 2009	

32	

©	 Victoria	 Caparrós	
2013	

Users	 of	 the	 Roofline	 Model	

	

	

[Bhatele	 ,	 2010]	 “Understanding	 Applica8on	 Performance	 via	 Micro-‐benchmarks	 on	 Three	
Large	 Supercomputers:	 Intrepid,	 Ranger	 and	 Jaguar”,	 Abhinav	 Bhatele	 et	 al.	 Internal8onal	
Journal	 of	 High	 Performance	 Compu8ng	 Applica8ons,	 2010	
	
[Rossinelli	 ,	 2011]	 	 “Mesh-‐par8cle	 interpola8ons	 on	 graphics	 processing	 units	 and	 mul8core	
central	 processing	 units”,	 D.	 Rossinelli	 et	 al.	 Phil.	 Trans.	 R.	 Soc,	 2011	
	

	

9

bandwidth (upward-sloped portion of the line). On the
other hand, if the ratio is large enough the performance will
be bound by the machine’s flop/s performance (horizontal
portion of the line). We can compare the shift between
these two bounds on different machines. The plot suggests
that memory-bound applications would likely achieve a
larger portion of the machine’s flop/s performance on
BG/P: if the application can do a little more than one float-
ing point computation for each byte loaded from DRAM, it
can achieve close to the peak Gflop/s for each core. On the
other hand, applications that can obtain significant reuse of
data loaded from memory might achieve highest perfor-
mance on Ranger despite its comparatively low bandwidth
per core.

We mapped the three applications onto the roofline plot
by calculating the bandwidth utilization to memory for the
three applications. This was done using the PerfSuite
toolkit (Kufrin, 2005) on the NCSA Abe cluster. The appli-
cations were run on small problem sizes using just a single
core of the machine. The flop per byte ratios of the three
applications span a wide range in the plot. The performance
of DNS is likely to be memory bandwidth bound on all
three machines. On the other hand, both NAMD and MILC
have high flop per byte ratios and are unlikely to experience
a significant memory bottleneck. In fact, MILC runs almost
completely in the L1 cache for the small input that was
used. The flop per byte ratios should remain similar for
weak scaling runs, although with strong scaling, the ratios
will change for the three applications. Nevertheless, the
plot allows us to roughly characterize the applications as
being either memory or computation bound.

Communication-heavy applications are typically lim-
ited by the network bandwidth and latency characteristics
of the machine even more than by the peak floating point
performance. We can compare the network bandwidth per
core on these machines. Intrepid, with its 3D Torus topol-
ogy where each node is connected to two neighbors in each
dimension through a dedicated link, has a bandwidth of
1.275 GB/s per core. The peer-to-peer bandwidth available

on Ranger is 1 GB/s. The actual bandwidth available per
core when using all 16 cores per node might be lower. The
bandwidth per core on Jaguar in comparison is 11.4 GB/s
but the limiting factor on Jaguar would be the Hyper Trans-
port link which gives 1.6 GB/s per core.

Dividing the network bandwidth per core by the peak
floating point performance per core in flop/s gives us a use-
ful metric indicating the amount of data that can be trans-
ferred per operation in an application running at peak
performance. The values for BG/P, Ranger and XT4 are
0.375, 0.109 and 1.357 bytes per flop. For network
bandwidth-bound applications, Jaguar would perform the
best, followed by BG/P and then Ranger.

As processor count and complexity of supercomputers
grows over time, power consumption is becoming an
increasingly important factor relating to the cost of execut-
ing code on these systems. Intrepid has the lowest total
power consumption of the three systems considered, at
1.26 MW. Ranger, in comparison, consumes 2.00 MW of
power and Jaguar consumes 1.58 MW. We can estimate the
power efficiency of these systems by dividing the peak
floating point performance by the power draw. This shows
Intrepid as the most power-efficient, yielding 442 Gflop/s
per kilowatt. Ranger, at 290 Gflop/s per kilowatt, is 34%
less power-efficient than Intrepid, while Jaguar, at
165 Gflop/s per kilowatt, is 63% less power-efficient than
the BG/P machine. Table 2 summarizes these results.

Another important factor when evaluating a supercom-
puter is the cost of the machine. Cost is typically consid-
ered in a relative sense, by dividing the purchase price of
a system by its performance. Delivered performance per
dollar would be a better metric for evaluation than the per-
formance per core metric used in this paper. Unfortunately,
cost evaluation is difficult due to shifting or unavailable
prices and varying maintenance costs across machines.
As a result, we decided not to incorporate cost data into this
paper.

3. Micro-benchmarks

Micro-benchmarking results are useful to characterize var-
ious aspects of parallel machines. Not only do they reveal
the actual communication and computation characteristics
of the supercomputers as opposed to the vendor-advertised
values, but they also help to explain performance results
of real applications. We have carefully chosen a range of

Table 2. Comparison of network bandwidth and flop ratings for
the parallel machines.

System

Communication
bandwidth per
core (MB/s)

Communication
bandwidth per
flop (bytes)

Mflop/s
per
Watt

Blue Gene/P 1,275 0.375 357
Ranger 1,000 0.109 217
XT4 11,400 1.357 130

0.1

1

10

100

0.1 1 10 100 1000

G
fl

op
/s

flopper byte

Roofline Model

D
N

S

N
A

M
D

M
IL

C

Ranger
XT4

Blue Gene/P

Fig. 1. Roofline model.

414 The International Journal of High Performance Computing Applications 24(4)

 at ETH Zurich on February 19, 2013hpc.sagepub.comDownloaded from

[Bhatele,	 2010]	 [Rossinelli,	 2011]	

Roofline	 model	 tradi:onally	 used	 with	 back-‐of-‐the-‐envelop	 calcula:ons	

©	 Victoria	 Caparrós	
2013	

Measuring	 T,	 W	 and	 Q	

¢  Measuring	 run:me	 T	
§  Time	 Stamp	 Counter	

¢  Measuring	 work	 W	
§  Composed	 from	 scalar	 and	 SIMD	 opera8ons	

	

¢  Measuring	 memory	 traffic	 Q	
	

10

W = Scalar double + SSE double⇥ 2 + AVX double⇥ 4

W = Scalar single + SSE single⇥ 4 + AVX single⇥ 8

•  Write-‐back	 traffic	

•  Prefetched	 data	
•  LLC	 misses	

•  Streaming	 (non-‐temporal)	 opera8ons	
•  Page	 table	 traffic	

Processor	
Die	

Main	
Memory	

P	 =	 	
T	
W	

I	 =	 	 Q	
W	

©	 Victoria	 Caparrós	
2013	

…	 But	 Measuring	 is	 Hard	

¢  Dynamic	 Frequency	 Scaling	

¢  Dead	 Code	 Elimina:on	

¢  Ini:aliza:on	

¢  Alignment	

¢  Asynchronous	 calls	

¢  Hardware	 Prefetcher	

11

If	 any	 of	 these	 factors	 is	 not	 controlled,	 measurements	 become	 meaningless	

©	 Victoria	 Caparrós	
2013	

Measurement	 Strategy	

¢  Repeat	 the	 execu:on	 (nr_of_repeats)	 	
§  Median,	 25%	 and	 75%	 percen8le	

¢  Run	 the	 code	 several	 :mes	 un:l	 execu:on	 gets	 long	 enough	 (nr_runs)	
§  Cold	 cache	 measurements	 require	 special	 treatment	

12

Replica	 of	 input	 data	 [5]	 	

Replica	 of	 input	 data	 [9]	 	

Replica	 of	 input	 data	 [7]	 	

Replica	 of	 input	 data	 [3]	 	

Replica	 of	 input	 data	 [8]	 	

Replica	 of	 input	 data	 [0]	 	

Replica	 of	 input	 data	 [4]	 	

Replica	 of	 input	 data	 [1]	 	

Replica	 of	 input	 data	 [6]	 	

Replica	 of	 input	 data	 [2]	 	

for (nr_of_repeats){

 start_measure()

 target_code(input_data)

 stop_measure()

}

for (nr_of_repeats){

 start_measure()

 for (nr_of_runs){

 target_code(input_data)

 }

 stop_measure()

}

Allocated	 memory	 (e.g.,	 nr_runs	 =	 10)	

for (nr_of_repeats){

 start_measure()

 for (nr_of_runs){

 target_code(replica_of_data)

 }

 stop_measure()

}

©	 Victoria	 Caparrós	
2013	

Experimental	 Setup	

¢  Intel	 PCM	 for	 accessing	 hardware	 performance	 counters	

¢  Different	 microarchitectures	 and	 opera:ng	 systems	

CPU Model Xeon E5-2660 Xeon X5680 Core i7-3930K

Microarch. Sandy Bridge EP Westmere EP Sandy Bridge E

ISA AVX SSE 4.2 AVX

Cores 8 6 6

Sockets 2 2 1

Frequency [GHz] 2.2 3.3 3.2

⇡ per core [Flops/cycle] 8 4 8

� one/all cores [Bytes/cycle] 6.7/14.1 6.7/13.9 6.2/10.4

Operating System RHEL Server 6 RHEL Server 6 Ubuntu 12.10 Windows 7

13

©	 Victoria	 Caparrós	
2013	

BLAS function W (n) Qr(n) Qw(n) Q(n) = Qr+w(n) Ir(n) I(n) = Ir+w(n)

daxpy y ↵x+ y = 2n � 16n � 8n � 24n 1
8 1

12

dgemv y ↵Ax+ �y = 2n2 + 2n � 8n2 + 16n � 8n � 8n2 + 24n n+1
4n+8 ⇡

1
4 n+1

4n+12 ⇡
1
4

dgemm C ↵AB + �C = 2n3 + 2n2 � 24n2 � 8n2 � 32n2 n+1
12 n+1

16

TABLE I
OPERATIONAL INTENSITY ANALYSIS FOR SOME BLAS1–3 ROUTINES.

III. METHODOLOGY

To construct roofline plots (e.g., Fig. 1), we need to measure
three code-specific quantities: W and Q to compute I , and T
to also compute P . In this section we first describe our general
measuring strategy, and then explain how each quantity W ,
Q, and T is obtained using performance counters. We explain
validation and discuss caveats. Finally, we briefly explain how
⇡ and � are obtained.

A. Measuring strategy
At a high level of abstraction, our measuring strategy has

the form:
nr_of_runs = get_nr_of_runs(target_code, data)

for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(data)

}

stop_measure()

}

The approach uses two loops. The outer loop repeats the
measurement for statistical purposes to return median and
quartile information. We choose nr_of_repeats = 20 in all
experiments. The final result is the median. In the plots we also
show, for each point, the quartiles (25th and 75

th percentiles)
along both axes (P and I) through (vertical and horizontal)
lines of appropriate length.

The inner loop reduces the error induced by the measur-
ing overhead [17], [32]. The number of runs nr_of_runs

is determined by an auxiliary routine that ensures that the
total measurement time is larger than a certain threshold; we
determined that for our machines a threshold of a 10

8 cycles
is sufficient.

The sketched strategy produces warm cache measurements.
Cold cache measurement. Cold cache measurements ex-

pose additional information since they include all compulsory
cache misses. A naive approach would flush the cache before
each computation (target_code(data) in the code above).
The flush routines could be:

• Using the clflush instruction if the data addresses are
available.

• Flushing up to LLC by reading a large buffer.
• Flushing the TLB by accessing data across many pages.
• Flushing the instruction cache by running code as large

as the cache.
Unfortunately, for small sizes the expensive flush invalidates
the measurement. For the cold cache experiments within this

paper, we use a different approach, similar to the one described
in [32], that takes the form:
for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(replica_of_data[run])

}

stop_measure()

}

Note that we are not using any flushing. Instead, we change
the working data set in every iteration, thus making sure that it
is not cache resident when the target code executes. To ensure
cold cache between repetitions, we enforce a lower limit on
the number of runs chosen, such that (� is the LLC size)

sizeof(data) ⇥ runs � � ⇥ associativity.

Further, the data (arrays of doubles in our experiments) for
each iteration is allocated separately (each aligned to cache
line boundaries) to eliminate the effect of prefetching from
one iteration to the next. We limit the size of data replication
to avoid excessive memory consumption and unwanted side
effects that may come with it. This limit is implemented as
...

target_code(replica_of_data[run%(limit)])

...

where limit is chosen similar to the lower bound for the runs:

sizeof(data) ⇥ limit � � ⇥ associativity.

Note that while this strategy enables measurements with cold
input/output data, it cannot control other cached information,
such as the target code and data allocated by the target code.

Cold cache and write-back cache. When dealing with a
write-back cache, data up to the size of the LLC is potentially
not transferred back to memory before the measurement ends.
Also, we might measure write traffic not due to our code, but
evicted in order to provide space for our data. We resolve this
by executing the target code before starting our measurements
such that it fills the LLC with data. Once the measurement
starts, the initial evictions compensate the data that are not
written back to memory at the end of the measurements.

B. Measuring Work W
Counters for floating point operations. Table II lists

the counters used for measuring floating point operations.
These counters are only incremented when either arithmetic or
comparison instructions are issued. Memory instructions, such
as loads, stores, and shuffles are ignored by the counters. For

BLAS	 Overview	

0.1 1 10

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000
2440000

100

2800

100

2800
Peak � seq. (8.0 Flops/Cycle)

Peak � par. (48.0 Flops/Cycle)

R
ea

d/
w

ri
te

 ß
 s
eq

. (
6.

2
Byt

es
/C

yc
le

)

R
ea

d/
w

ri
te

 ß
 p

ar
.(1

0.
31

Byt
es

/C
yc

le
)

daxpy

dgemv

dgemm

14

©	 Victoria	 Caparrós	
2013	

BLAS	 Overview	 —	 Read/Write-‐Only	 BW	

0.1 1 10 100

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000
2440000

100

2800

100

2800

daxpy

dgemv

dgemm

R
e
a
d
 ß

 (
5
.0

B
y
te

s/
C

y
c
le

)

Peak � (8.0 Flops/Cycle)

15

0.1 1 10 100

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000

2440000

100

2800

100

2800

W
ri
te

 ß
 (
3
.8

B
y
te

s/
C

y
c
le

)

daxpy

dgemv

dgemm

Peak � (8.0 Flops/Cycle)

BLAS function W (n) Qr(n) Qw(n) Q(n) = Qr+w(n) Ir(n) I(n) = Ir+w(n)

daxpy y ↵x+ y = 2n � 16n � 8n � 24n 1
8 1

12

dgemv y ↵Ax+ �y = 2n2 + 2n � 8n2 + 16n � 8n � 8n2 + 24n n+1
4n+8 ⇡

1
4 n+1

4n+12 ⇡
1
4

dgemm C ↵AB + �C = 2n3 + 2n2 � 24n2 � 8n2 � 32n2 n+1
12 n+1

16

TABLE I
OPERATIONAL INTENSITY ANALYSIS FOR SOME BLAS1–3 ROUTINES.

III. METHODOLOGY

To construct roofline plots (e.g., Fig. 1), we need to measure
three code-specific quantities: W and Q to compute I , and T
to also compute P . In this section we first describe our general
measuring strategy, and then explain how each quantity W ,
Q, and T is obtained using performance counters. We explain
validation and discuss caveats. Finally, we briefly explain how
⇡ and � are obtained.

A. Measuring strategy
At a high level of abstraction, our measuring strategy has

the form:
nr_of_runs = get_nr_of_runs(target_code, data)

for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(data)

}

stop_measure()

}

The approach uses two loops. The outer loop repeats the
measurement for statistical purposes to return median and
quartile information. We choose nr_of_repeats = 20 in all
experiments. The final result is the median. In the plots we also
show, for each point, the quartiles (25th and 75

th percentiles)
along both axes (P and I) through (vertical and horizontal)
lines of appropriate length.

The inner loop reduces the error induced by the measur-
ing overhead [17], [32]. The number of runs nr_of_runs

is determined by an auxiliary routine that ensures that the
total measurement time is larger than a certain threshold; we
determined that for our machines a threshold of a 10

8 cycles
is sufficient.

The sketched strategy produces warm cache measurements.
Cold cache measurement. Cold cache measurements ex-

pose additional information since they include all compulsory
cache misses. A naive approach would flush the cache before
each computation (target_code(data) in the code above).
The flush routines could be:

• Using the clflush instruction if the data addresses are
available.

• Flushing up to LLC by reading a large buffer.
• Flushing the TLB by accessing data across many pages.
• Flushing the instruction cache by running code as large

as the cache.
Unfortunately, for small sizes the expensive flush invalidates
the measurement. For the cold cache experiments within this

paper, we use a different approach, similar to the one described
in [32], that takes the form:
for (nr_of_repeats){

start_measure()

for (nr_of_runs) {

target_code(replica_of_data[run])

}

stop_measure()

}

Note that we are not using any flushing. Instead, we change
the working data set in every iteration, thus making sure that it
is not cache resident when the target code executes. To ensure
cold cache between repetitions, we enforce a lower limit on
the number of runs chosen, such that (� is the LLC size)

sizeof(data) ⇥ runs � � ⇥ associativity.

Further, the data (arrays of doubles in our experiments) for
each iteration is allocated separately (each aligned to cache
line boundaries) to eliminate the effect of prefetching from
one iteration to the next. We limit the size of data replication
to avoid excessive memory consumption and unwanted side
effects that may come with it. This limit is implemented as
...

target_code(replica_of_data[run%(limit)])

...

where limit is chosen similar to the lower bound for the runs:

sizeof(data) ⇥ limit � � ⇥ associativity.

Note that while this strategy enables measurements with cold
input/output data, it cannot control other cached information,
such as the target code and data allocated by the target code.

Cold cache and write-back cache. When dealing with a
write-back cache, data up to the size of the LLC is potentially
not transferred back to memory before the measurement ends.
Also, we might measure write traffic not due to our code, but
evicted in order to provide space for our data. We resolve this
by executing the target code before starting our measurements
such that it fills the LLC with data. Once the measurement
starts, the initial evictions compensate the data that are not
written back to memory at the end of the measurements.

B. Measuring Work W
Counters for floating point operations. Table II lists

the counters used for measuring floating point operations.
These counters are only incremented when either arithmetic or
comparison instructions are issued. Memory instructions, such
as loads, stores, and shuffles are ignored by the counters. For

©	 Victoria	 Caparrós	
2013	

BLAS	 Overview	 —	 Parallel	

0.1 1 10

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

10000

2440000
100

2800

100

2800

daxpy
dgemv

dgemm

Peak � par. (48.0 Flops/Cycle)

Peak � seq. (8.0 Flops/Cycle) R
ea

d/
w

ri
te

 ß
 p

ar
.(1

0.
31

Byt
es

/C
yc

le
)

R
ea

d/
w

ri
te

 ß
 s
eq

. (
6.

2
Byt

es
/C

yc
le

)

16

©	 Victoria	 Caparrós	
2013	

0.1 1 10 100

Operational Intensity [Flops/Byte]

1

10

100

Performance [Flops/Cycle]

2800

100
2800

100

2800

100

2800

2800

100

2800

Triple loop

Six fold loop

MKL seq.

MKL par.

ATLAS seq.

ATLAS par.

Peak � par. (128.0 Flops/Cycle)

Peak � seq. (8.0 Flops/Cycle)

Rea
d/w

rit
e

ß p
ar

. (
14 B

yt
es

/C
yc

le)

Rea
d/w

rit
e

ß se
q. (

6.7
 B

yt
es

/C
yc

le)

MMM	 Overview	 —	 Op:miza:on	 Study	

17

©	 Victoria	 Caparrós	
2013	

Conclusion	

¢  New	 insights	 into	
performance	 bo_lenecks	

	
	

¢  Robust	 measurement	
strategy	 required	

	

18

0.1 1 10

Operational Intensity [Flops/Byte]

1

10

Performance [Flops/Cycle]

Peak Performance (8.0 F/C)

dgemv

dgemm

R
ea

d
/w

ri
te

 ß
 s
eq

.
(6

.2
B
yt

es
/C

yc
le
)

100

2800

100

2800

	

¢  Yet,	 it	 is	 a	 model	 and	 has	 some	 limita:ons	
§  Assumes	 complete	 overlap	 of	 computa:on	 and	 communica:on	
§  Does	 not	 consider	 addi:onal	 bo_lenecks	

Backup	 Slides	

©	 Victoria	 Caparrós	
2013	

Performance	 Counters	 Table	
Event Event Mask Mnemonic

Flops

Sandy / Ivy Bridge
Scalar single FP COMP OPS EXE.SSE FP SCALAR SINGLE
SSE single FP COMP OPS EXE.SSE PACKED SINGLE
AVX single SIMD FP 256.PACKED SINGLE
Scalar double FP COMP OPS EXE.SSE FP SCALAR DOUBLE
SSE double FP COMP OPS EXE.SSE PACKED DOUBLE
AVX double SIMD FP 256.PACKED DOUBLE
Westmere
Scalar FP COMP OPS EXE.SSE FP SCALAR
SSE FP COMP OPS EXE.SSE FP PACKED

Memory ops

Sandy / Ivy Bridge
Cache lines reads UNC CBO CACHE LOOKUP.I

UNC CBO CACHE LOOKUP.ANY REQUEST FILTER
Cache lines writes UNC ARB TRK REQUEST.EVICTIONS
Westmere-EP
Cache lines reads UNC QMC NORMAL READS.ANY
Cache lines writes UNC QMC WRITES.FULL.ANY
Sandy Bridge-EP
Cache lines reads UNC IMC NORMAL READS.ANY
Cache lines writes UNC IMC WRITES.FULL.ANY

Timers

Core Cycles UnHalted Core Cycles
Reference Cycles UnHalted Reference Cycles
Time stamp counter IA32 TIME STAMP COUNTER

20

