
Analysis and Transformation of Programs
with Explicit Parallelism

Vivek Sarkar
E.D. Butcher Chair in Engineering

Professor of Computer Science
Rice University

vsarkar@rice.edu
June 30, 2013

2

Parallelism is Ubiquitous

3

§  Thread-based libraries
§  Parallelism is exploited via library calls
§  Examples: Pthreads, Intel Threading Building Blocks, Java

Concurrency, Microsoft .Net Task Parallel Library
§  Directive-based models

§  Simplified pragma syntax for expressing parallelism; for many
programs, semantics is preserved if pragmas are elided

§  Example: OpenMP
§  Programming languages with explicit parallelism

§  Targets shared and distributed memory systems
§  Examples: Cilk (MIT), Cilk++ (Intel), Unified Parallel C, Co-Array

Fortran, CUDA (NVIDIA), OpenCL, Chapel (Cray), X10 (IBM),
Habanero-Java (Rice)

Diversity of Parallel Programming Models

4

Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

Habanero
Programming

Languages

Habanero Static
Compiler &

Parallel
Intermediate

Representation

Habanero
Runtime
System

Two-level programming model
Declarative Coordination

Language for Domain Experts,
CnC (Intel Concurrent Collections)

+
Task-Parallel Languages for

Parallelism-aware Developers:
Habanero-Java (from X10 v1.5),

Habanero-C, Habanero-Scala

Portable execution model
1) Lightweight asynchronous tasks and data
transfers
§ Creation: async tasks, future tasks, data-
driven tasks
§ Termination: finish, future get, await
§ Data Transfers: asyncPut, asyncGet,
asyncISend, asyncIRecv
2) Locality control for task and data
distribution
§ Task Distributions: hierarchical places
§ Data Distributions: hierarchical places,
global name space
3) Inter-task synchronization operations
§ Mutual exclusion: isolated, actors
§ Collective and point-to-point
synchronization: phasers

http://habanero.rice.edu

Extreme Scale Platforms

Parallel Applications

5

Elements of Habanero Execution Model
1) Lightweight asynchronous tasks and data transfers
§  Creation: async tasks, future tasks, data-driven tasks
§  Termination: finish, future get, await
§  Data Transfers: asyncPut, asyncGet, asyncISend, asyncIRecv
2) Locality control for task and data distribution
§  Task Distributions: hierarchical places
§  Data Distributions: hierarchical places, global name space
3) Inter-task synchronization operations
§  Mutual exclusion: global/object-based isolation, actors
§  Collective and point-to-point synchronization: phasers
Goal: unified model of parallelism that spans programming models,
compilers, runtime systems, and provides a pedagogic foundation
for teaching

6

Classification of Habanero
Parallel Programs

§  Legend
§  DLF = DeadLock-Free
§  DRF = Data-Race-Free
§  DET = Determinate
§  DRFèDET = DRF implies DET
§  SER = Serializable

§  If a Habanero program only uses
async, finish, and future constructs (no
mutual exclusion), then it is guaranteed
to belong to the DLF + DRFèDET +
SER class
§  Adding phasers yields programs in
the DLF + DRFèDET class
§  Adding async await yields programs in
the DLF + DRFèDET class
§  Restricting shared data accesses to
futures, isolated, actors yields programs
in the DRF-ALL class

7) ALL

6) DET
5) DRF-ALL

4) DLF-DRF-ALL

1) DLF-
DRF-DET-SER

3) DRF-DET

2) DLF-
DRF-DET

“Habanero-Java: the New Adventures of Old X10.” Vincent Cave, Jisheng Zhao, Jun Shirako,
Vivek Sarkar PPPJ 2011.

7

Effectiveness of Data Race Detection depends on
Execution Model primitives

Properties OTFDAA

[PLDI ’89]

Offset-
Span

[SC ’91]

SP-bags

[SPAA ’97]

SP-hybrid

[SPAA ’04]

FastTrack

[PLDI ’09]

ESP-bags

[RV ’10]

SPD3

[PLDI ’12]
Target Language Nested Fork-Join

& Synchronization
operations

Nested
Fork-Join

Spawn-
Sync

Spawn-
Sync

Unstructured
Fork-Join

Structured
Async-
Finish

Structured
Async-
Finish

Space Overhead
per memory location

O(m) O(1) O(1) O(1) O(N) O(1) O(1)

Guarantees Per-Schedule Per-Input Per-Input Per-Input Per-Input Per-Input Per-Input

Empirical Evaluation No Minimal Yes No Yes Yes Yes

Execute Program in
Parallel

Yes Yes No Yes Yes No Yes

Dependent on
Scheduling technique

No No Yes Yes No Yes No

“Scalable	 and	 Precise	 Dynamic	 Data	 Race	 Detec4on	 for	
Structured	 Parallelism.”	 Raghavan	 Raman,	 Jisheng	 Zhao,	 Vivek	
Sarkar,	 Mar4n	 Vechev,	 Eran	 Yahav.	 	 PLDI	 2012.	

8

Target Platforms

Habanero programs have been executed on a wide range of
production and experimental systems
§  Multicore SMPs (AMD, IBM, Intel)
§  Discrete GPUs (AMD, NVIDIA)
§  Integrated GPUs (AMD, Intel)
§  FPGA (Convey, w/ GPU added)
§  Clusters
§  Cyclops
§  SCC
§  . . .

9

Pedagogy using Habanero execution model,
COMP 322: Fundamentals of Parallel Programming
 §  Sophomore-level CS Course at Rice

§  https://wiki.rice.edu/confluence/display/PARPROG/COMP322
§  Or do a web search on “comp322 wiki”

§  Approach – mid-level parallel programming model
§  “Simple things should be simple, complex things should be possible”
§  Introduce students to fundamentals of parallel programming

§  Primitive constructs for task creation & termination, collective & point-to-
point synchronization, task and data distribution, and data parallelism

§  Abstract models of parallel computations and computation graphs
§  Parallel algorithms & data structures including lists, trees, graphs, matrices
§  Common parallel programming patterns

§  Use Habanero-Java (HJ) as pedagogic language to understand fundamentals
for two-thirds of course, and then teach standard parallel programming models
(Java threads, MPI, CUDA) using HJ principles

10

Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

Habanero
Programming

Languages

Habanero Static
Compiler &

Parallel
Intermediate

Representation

Habanero
Runtime
System

Two-level programming model
Declarative Coordination

Language for Domain Experts,
CnC (Intel Concurrent Collections)

+
Task-Parallel Languages for

Parallelism-aware Developers:
Habanero-Java (from X10 v1.5),

Habanero-C, Habanero-Scala

Portable execution model
1) Lightweight asynchronous tasks and data
transfers
§ Creation: async tasks, future tasks, data-
driven tasks
§ Termination: finish, future get, await
§ Data Transfers: asyncPut, asyncGet,
asyncISend, asyncIRecv
2) Locality control for task and data
distribution
§ Task Distributions: hierarchical places
§ Data Distributions: hierarchical places,
global name space
3) Inter-task synchronization operations
§ Mutual exclusion: isolated, actors
§ Collective and point-to-point
synchronization: phasers

http://habanero.rice.edu

Extreme Scale Platforms

Parallel Applications

11

Two approaches to compiling for parallelism

1.  Automatic extraction of parallelism from sequential
programs
§  Past work from the last 30+ years has led to fairly mature

compiler technologies in this area
§  New hardware platforms continue to provide new challenges

2.  Compilation and optimization of explicitly parallel
programs
§  Increase in languages with explicit parallelism (as evidenced by

this workshop)
§  New compiler foundations needed for programs with explicit

parallelism
è In general, we need a combination of 1. and 2.

12

Three Levels of Parallel Intermediate Representations

§  High-level PIR (HPIR)
§  Retain high-level loop constructs
§  Retain hierarchical structure of parallelism in a Program Structure

Tree (PST)
§  Middle-level PIR (MPIR)

§  Flatten control flow
§  Convert to lower-level parallel constructs (async, finish)

§  Low-level (PIR)
§  Include code generation for target runtime system

Motivation: compiler optimizations can be performed at all
three levels

13

Related References
[BZS13] Interprocedural Strength Reduction of Critical Sections in Explicitly-Parallel Programs.

Rajkishore Barik, Jisheng Zhao, Vivek Sarkar. The 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT), September 2013 (to appear).

[NSZS13] A Transformation Framework for Optimizing Task-Parallelism Programs. V.
Krishna Nandivada, Jun Shirako, Jisheng Zhao, Vivek Sarkar. ACM Transactions on
Programming Languages and Systems (TOPLAS), Volume 35, May 2013.

[BZGPBS10] Communication Optimizations for Distributed-Memory X10 Programs. Rajkishore
Barik, Jisheng Zhao, David Grove, Igor Peshansky, Zoran Budimlić, Vivek Sarkar. 25th IEEE
International Parallel and Distributed Processing Symposium (IPDPS), April 2011.

[ZSNS10] Reducing Task Creation and Termination Overhead in Explicitly Parallel Programs.
Jisheng Zhao, Jun Shirako, Krishna Nandivada, Vivek Sarkar. The Nineteenth International
Conference on Parallel Architectures and Compilation Techniques (PACT), September 2010.

[BS09] Interprocedural Load Elimination for Dynamic Optimization of Parallel Programs.
Rajkishore Barik, Vivek Sarkar. The Eighteenth International Conference on Parallel
Architectures and Compilation Techniques (PACT), September 2009.

[SZNS09] Chunking Parallel Loops in the Presence of Synchronization. Jun Shirako, Jisheng
Zhao, Krishna Nandivada, Vivek Sarkar. Proceedings of the 2009 ACM International
Conference on Supercomputing (ICS), June 2009.

14

Outline of Today’s Lecture

§  HPIR Example: A Transformation Framework for
Optimizing Task-Parallel Programs [NSZS13]

§  MPIR Example: Load Elimination [BS09]

15

Recap: async & finish constructs in X10 & Habanero-Java

//A0(Parent)

finish { //Begin finish

 async {

 STMT1; //A1(Child)

 }

 STMT2; //A0

} //End finish

STMT2

async

STMT1

terminate
wait

A1 A0

async S
§  Creates a new child task that executes

statement S
§  Like OpenMP’s task pragma

§  Parent task moves on to statement
following the async

§  Can be used to implement higher level
constructs like forall loops

finish S
§  Execute S, but wait until all

(transitively) spawned asyncs in
S‘s scope have terminated
§  Like OpenMP’s taskwait

§  Implicit finish between start and
end of main program

§  Use of finish cannot create a
deadlock cycle

“X10: An Object-oriented approach to non-uniform Clustered Computing”, P.Charles et al. OOPSLA 2005.

16

Parallel Spanning Tree Algorithm in Habanero-Java

DFS

compute

compute

compute
compute

1.  class V {!
2.  V [] neighbors; // Input adjacency list!
3.  V parent; // Output spanning tree!
4.  . . .!
5.  boolean tryLabeling(V n) {!
6.  boolean retVal = false;!
7.  isolated(this) // Object-based isolation!
8.   if (parent == null) {!
9.  parent = n; retVal = true; }!
10.  return retVal;!
11.  } // tryLabeling!
12.  void compute() {!
13.  for (int i=0; i<neighbors.length; i++) { !
14.  V child = neighbors[i]; !
15.  if (child.tryLabeling(this))!
16.   async child.compute(); //escaping async!
17.  } !
18.  } // compute!
19.  } // class V!
20.  root.parent = root; //Use self−cycle to identify root !
21.   finish root.compute();!

Async edge

Finish edge

17

HJ’s forall statement = finish + for + async + barriers

Goal 1 (minor): replace common finish-forasync idiom by forall e.g., replace
finish for(point [I,J] : [0:N-1,0:N-1]) async

 for (point[K] : [0:N-1])

 C[I][J] += A[I][K] * B[K][J];

by
forall (point [I,J] : [0:N-1,0:N-1])

 for (point[K] : [0:N-1])

 C[I][J] += A[I][K] * B[K][J];

Goal 2 (major): Also support barrier synchronization (next), with extension
for next-single statements

18

omp_set_num_threads(m); // m = “number of hardware threads”
delta = epsilon+1; iters = 0;
#pragma omp parallel for
for (int j = 1 ; j <= n ; j++) {
 body(…);
}

OpenMP does not allow barriers in parallel loops
(non-conformable example)

Unpredictable results on different platforms
Compile-time error, runtime error, deadlock, correct execution if n = m, …

void body(…) {
 while (delta > epsilon) {
 newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;
 diff[j] = abs(newA[j]-oldA[j]);
 #pragma omp barrier
 if (j == 1) {
 delta = sum(diff); iters++;
 temp = newA; newA = oldA; oldA = temp;
 }
 #pragma omp barrier
} }

19

1.  forall (point[i] : [0:m-1]) {

2.  int sq = i*i;

3.  System.out.println(“Hello from task with sq = “ + sq);

4.  next;

5.  System.out.println(“Goodbye from task with sq = “ + sq);

6.  }

§  next è each forall iteration suspends at next until all iterations arrive
(complete previous phase), after which the phase can be advanced
§  If a forall iteration terminates before executing “next”, then the other iterations do not

wait for it
§  Scope of synchronization is the closest enclosing forall statement
§  Special case of “phaser” construct

Barrier Synchronization: HJ’s “next” statement in forall construct

P
ha

se
 0

P

ha
se

 1

20

next-with-single statement (extension of barrier)

§  Goal: rewrite Hello-Goodbye example so as to print a
single log message in between phases

§  Solution: use next-with-single-statement
1.  forall (point[i] : [0:m-1]) {

2.  int sq = i*i;

3.  System.out.println(“Hello from task with sq = “ + sq);

4.  next // next-with-single statement

5.  System.out.println(“LOG: Between Hello & Goodbye phases”);

6.  System.out.println(“Goodbye from task with sq = “ + sq);

7.  }

21

Legality of Loop Distribution for a Sequential Program

Is it legal to distribute the following loop, assuming
that f() and g() are unanalyzable functions?

for (int i = ...) { !
 /* S1 */ X[f(i)] = ... ;!
 /* S2 */ ... = X[g(i)];!
} !

22

Legality of Loop Distribution for a Parallel Program

Is it legal to distribute the following loops, assuming
that f() and g() are unanalyzable functions?
!
for (int i = ...) {//Loop 1 !
 /* S1 */ X[f(i)] = ... ;!
 /* S2 */ async ... = X[g(i)];!
} !
!
forall (point[i] : ...) {//Loop 2!
 /* S1 */ X[f(i)] = ... ;!
 /* S2 */ ... = X[g(i)];!
} !

We need a precise definition
of data dependence in

parallel programs to answer
this question

This is a fundamental
question for compiler

transformations and for
program refactorings

23

The relation HB on instances IA and IB of statements A and B is the
smallest relation satisfying the following conditions
§  (Sequential order) If IA and IB belong to the same task, and IB is

sequentially control or data dependent on IA, then HB(IA,IB) = true.
§  (Async creation) If IA is an instance of an async statement, and IB is

the corresponding instance of the first statement in the body of the
async, then HB(IA,IB) = true.

§  (Finish termination) If IA is the last statement of an async task, and IB
is the end-finish statement instance of IA's immediately-enclosing-
finish (IEF) instance, then HB(IA,IB) = true.

§  (Transitivity) If HB(IA,IB) = true and HB(IB,IC) = true then HB(IA,IC) =
true.

Dynamic Happens-Before (HB) Relation in Task Parallel Programs

24

Static Happens-Before Dependence (HBD) Relation

•  We say that HBD(A, B) = true if there is a possible execution of the program with
instances IA and IB of statements A and B that satisfies all the following conditions:
(1)  HB(IA,IB) = true,
(2)  IA and IB access the same location X and at least one of the accesses is a

write, and
(3)  There is no statement instance IC that writes X such that HB(IA,IC) = true and

HB(IC,IB) = true.
§  As with dependence analysis of sequential programs, we classify the dependence

as flow, anti, and output when the accesses performed by IA and IB are read-after-
write, write-after-read, and write-after-write respectively.

§  HBD is a “may dependence” analysis (conservative)
§  HBD relation can be qualified by restricting the sets of instances participating in

the dependence e.g., using direction vectors and distance vectors
§  HBD relation degenerates to sequential data dependences when the input

program is sequential.

25

Extending traditional loop transformations for task
parallel programs [NSZS13, Fig 9]

NOTE: these rules are also extended in the paper for precise exception semantics

26

Extending traditional loop transformations for task
parallel programs [NSZS13, Fig 9] (contd)

27

Three example optimizations for parallel tasks and
parallel loops

1.  Loop chunking
§  chunking fine-grain parallel loops into coarse-grained parallel tasks eliminates

the significant overhead for task spawning and scheduling.
2.  Forall coarsening

§  reduce task creation and termination overheads by increasing the scope of
forall loops
§  Simple forall-coarsening increases the granularity of synchronization-free

parallelism
§  Forall-coarsening with synchronization further increases the granularity of

parallelism by adding synchronization operations (SPMDization)
3.  Finish elimination

§  eliminate and/or reshape finish regions to reduce synchronization overhead
and increase parallelism

28

Example of Illegal Forall Chunking

Naïve chunking of forall is illegal
(iteration j executes multiple
while-loop iterations before
iteration j+1 starts)

29

Example of Legal Forall Chunking

Moving sequential (chunked)
j-loop inside while-loop leads to
a correct transformation

30

Loop Chunking Framework

Parallel Loop
Distribution

Parallel/
Serial Loop
Interchange

Parallel Loop
Unswitching

no
change

?

yes
no

PSG

Synchronization
present?

Cleanup
Optimizations

Strip
Mining

Serialization

no
yes

Goal:
 Correct chunking transformation to keep original semantics

Step 1: Strip mining (generated nested parallel loops)
Step 2: Isolation of next (combinations of interchange, unswitching,

distribution)
Step 3: Serialization of inner strip-mined parallel loop

31

Performance
Results for
Loop
Chunking
unopt =
 original
 code

opt =
 after
 chunking

(a) T2

(b) Xeon

(c) Power7

!"#$% $"#$% !"&$% !"!'%

$$"#(%

$"'(% !"#(%

$&")*%

$"))%

#"*+%

$!"&)%

)&"($%

,"#&%

$#"$$%

)"+)%
$"*&%

)$"))%

&"!$%

!%

,%

$!%

$,%

)!%

),%

'!%

',%

-./012% 345% 64-789% 1:% 6:% ;2% <445=-09% >?0-2>% @?4"A?09%

.94=2%

4=2%

s
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 s
e

q
u

e
n

ti
a

l
v
e

rs
io

n

!"#$%
!"$% !"&'%

!"!(%

#"()%

!"$(%
("()%

'"!*%

!"&+%

'"!,% #"*#%

,"!*%

#"!$%

#"*(%

("('% ("##%

'"*+%

#"$&%

!%

(%

#%

'%

&%

)%

$%

+%

,%

*%

-./012% 345% 64-789% 1:% 6:% ;2% <445=-09% >?0-2>% @?4"A?09%

.94=2%

4=2%

s
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 s
e

q
u

e
n

ti
a

l
v
e

rs
io

n

!"!#$!"%&$!"''$
!"!%$

'"&%$

!"()$

%"%&$

'"%*$

!"'#$

%"+&$
%"#($

"#$

%"*'$

("*'$

%",,$

%"%#$

'",&$

'"%&$

!$

!"&$

%$

%"&$

'$

'"&$

($

("&$

*$

*"&$

&$

-./012$ 345$ 64-789$ 1:$ 6:$;2$ <445=-09$ >?0-2>$ @?4"A?09$

.94=2$

4=2$

s
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 s
e

q
u

e
n

ti
a

l
v
e

rs
io

n

32

Three example optimizations for parallel tasks and
parallel loops

1.  Loop chunking
§  chunking fine-grain parallel loops into coarse-grained parallel tasks eliminates

the significant overhead for task spawning and scheduling.
2.  Forall coarsening

§  reduce task creation and termination overheads by increasing the scope of
forall loops
§  Simple forall-coarsening increases the granularity of synchronization-free

parallelism
§  Forall-coarsening with synchronization further increases the granularity of

parallelism by adding synchronization operations (SPMDization)
3.  Finish elimination

§  eliminate and/or reshape finish regions to reduce synchronization overhead
and increase parallelism

33

Example of Illegal Forall Coarsening

Naïve interchange of forall
and while loops is illegal
(no barrier leads to data races)

34

Example of Legal Forall Coarsening

Use of next barrier with
single statement leads to
a correct transformation
(SPMDization)

35

Forall Coarsening Framework

Serial-
Parallel Loop
Interchange

Serial Loop
Distribution

Serial Loop
Unswitching

Redundant
Finsh

Elimination

PSG

forall
present?

Cleanup
Optimizations

no
change

?

Serial-
Parallel Loop
Interchange

Loop
Switching

Loop Fusion

Redundant
Finsh

Elimination

no
change

?

yes

no

yes

no no

yes

simple for-all coalescing for-all coalescing with synchronization

36

Performance
Results for
Forall
Coarsening

(a) T2

(b) Xeon

(c) Power7

!"#$%
&'"(&%

)("*&%

+"!(%

&!"&&%

,)"$#%

&,"+&%

#+"#&%

,$",+%

+*"#&%
!'"'&%

)*")#%

,("),%
#,"&%

#+"+!% #+"+)%

+*"$#%

!#"*&%

)("$,%

,(")#%

#+")+%

'%

&'%

)'%

,'%

#'%

+'%

!'%

*'%

-./012% 345% 64-789% 1:% 6:% -.7% ;<4"=<09%

.94>2% 4>2% 4>2?593<%

s
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 s
e

q
u

e
n

ti
a

l
v
e

rs
io

n

!"#$% &"'&%

$"#'%

&"#(%
&"')% &"*'%

!"&*%

))")+%

,"),%

)#"(*%

"(%

!")(%

+")$%

("!)%

))"&,%

,"!+%

)#"''%

$",'%

!"&!%

+")$%

(",&%

#%

&%

+%

(%

$%

)#%

)&%

-./012% 345% 64-789% 1:% 6:% -.7% ;<4"=<09%

.94>2% 4>2% 4>2?593<%

s
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 s
e

q
u

e
n

ti
a

l
v
e

rs
io

n

!"#$% !"&'%

$"('%

!"'&%

'"()%
("$#%

)"*)%

!+"*!%

"$%
&"#(%

!,",(%

'"(#%

$"&!%

'"+&%

!+"#*%

*"#,%
&"#$%

!#"*&%

'",#%
$"&!%

&"'&%

+%

$%

!+%

!$%

)+%

)$%

-./012% 345% 64-789% 1:% 6:% -.7% ;<4"=<09%

.94>2% 4>2% 4>2?593<%

s
p

e
e

d
u

p
 r

e
la

ti
v
e

 t
o

 s
e

q
u

e
n

ti
a

l
v
e

rs
io

n

unopt =
 chunking

opt =
 chunking +
 coarsening

opt-rnse = opt + Redundant Next/Single Elimination

37

Three example optimizations for parallel tasks and
parallel loops

1.  Loop chunking
§  chunking fine-grain parallel loops into coarse-grained parallel tasks eliminates

the significant overhead for task spawning and scheduling.
2.  Forall coarsening

§  reduce task creation and termination overheads by increasing the scope of
forall loops
§  Simple forall-coarsening increases the granularity of synchronization-free

parallelism
§  Forall-coarsening with synchronization further increases the granularity of

parallelism by adding synchronization operations (SPMDization)
3.  Finish elimination

§  eliminate and/or reshape finish regions to reduce synchronization overhead
and increase parallelism

38

BOTS Health Benchmark with Recursive Asyncs
 // Traverse village hierarchy
 void sim_village_par(final Village village) {
 ...

1: finish {
2: final Iterator it=village.forward.iterator();

3: while (it.hasNext()) {
4: final Village v = (Village)it.next();

5: // seq clause specifies threshold condition
 // async cannot have phased or await clauses
6: async seq (sim_level - village.level >= bots_cutoff_value)
7: sim_village_par(v);

 } // while
8: ;

9: } // finish:
10:

39

Optimized Code after Finish Elimination
 // Traverse village hierarchy
 void sim_village_par(final Village village) {

 ...

1: if (sim_level - village.level < bots_cutoff_value) {
2: finish {
3: final Iterator it=village.forward.iterator();

4: while (it.hasNext()) {

5: final Village v = (Village)it.next();

6: async sim_village_par(v);

7: } // while

8: ;

9: } // finish
10: } else {
11: final Iterator it=village.forward.iterator();

12: while (it.hasNext()) {

13: final Village v = (Village)it.next();

14: sim_village_par(v);

15: } // while

16: ;

17: }

18:

40

Finish Elimination Framework

Finish
Distribution

Serial Loop
Distribution

Loop/Finish
Interchange

Finish
Fusion

Tail Finish
Elimination

Redundant
Finish

Elimination

Finish
Unswitching

If Expansion
Serial Loop
Unswitching

PSG

finish
present?

Optimized
Code

no
change

?

yes

no

yes

no

41

Performance
Results for
Finish
Elimination
unopt =
 chunking +
 coarsening

opt =
 unopt +
 finish elim.

(a) T2

(b) Xeon

(c) Power7

!"#$%

&"'$%

#"#(% #"&&%

(")'%

&"&)%

!"(*%

&")#%

#"&#% #"&*%

!")'%

&"!)%

+%

#%

&%

(%

!%

,%

*%

-./% 01230045% 667% 8992:-35% ;43-1;% <49"=435%

.59:1%

9:1%

s
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 s

e
q
u
e
n
ti
a
l
v
e
rs

io
n

!"#$%

$"#&% $"''%

$"$#%

&"'!%
&"&'%

(")!%

$"##%
&"*!%

$"&+%

,"&&%

&"!$%

*%

$%

&%

,%

+%

!%

(%

#%

'%

-./% 01230045% 667% 8992:-35% ;43-1;% <49"=435%

.59:1%

9:1%

s
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 s

e
q
u
e
n
ti
a
l
v
e
rs

io
n

!"#$%&

'#()&
$#*$&

+#%"&

$+#$$&

(#$)&

!*#)%&

)#$)&
!#%%&

+#'%&

$%#%(&

(#*(&

,&

'&

+,&

+'&

$,&

$'&

!,&

!'&

%,&

%'&

-./& 01230045& 667& 8992:-35& ;43-1;& <49#=435&

.59:1&

9:1&

s
p
e
e
d
u
p
 r

e
la

ti
v
e
 t
o
 s

e
q
u
e
n
ti
a
l
v
e
rs

io
n

42

Outline of Today’s Lecture

§  HPIR Example: A Transformation Framework for
Optimizing Task-Parallel Programs

§  MPIR Example: Load Elimination

43

MPIR example: Load Elimination [BS09]

§  Load Elimination is a compiler transformation that replaces
a heap access by a read of a compiler-generated
temporary
§  Temporary can be allocated on a faster/energy-efficient storage

like register, scratchpads etc
§  Best performed at medium PIR level

§  Flattened control flow simplifies data flow analysis (compared to
HPIR)

§  Runtime-independent finish and async operators also simplifies
analysis (compared to LPIR)

44

Load Elimination Example

p := new Type1
q := new Type1
. . .
p.x := …
q.x := …
… := p.x

p := new Type1
q := new Type1
. . .
T1 := …
p.x := T1
q.x := …
… := T1

Original Code Transformed code

p := new Type1
q := new Type1
. . .
… := p.x
q.x := …
… := p.x

p := new Type1
q := new Type1
. . .
T1 := p.x
… := T1
q.x := …
… := T1

45

Example of Load Elimination Example in HJ

1: void main() {
2: p.x = …
3: s.w = …
4: finish {
5: async { //async_1
6: p.x = …
7: isolated { q.y = …; … = q.y }
8: … = p.x
9: } // async_1
10: foo()
11: } // finish
12: … = p.x
13: … = s.w
14: }

15: void foo() {
16: async bar() //async_2
17: isolated { q.y = … }
18: … = s.w
19: }

20: void bar() {
21: r.z = …
22: .. = r.z
23: }

Can be replaced by a scalar

Can not be replaced by a scalar

46

Side-Effect Analysis

§  Effects of function calls
§  What variables may be modified as side effects of a function call?

§  Extend Banning’s formulation of side effects
§  MOD(s), REF(s): set of variables that may be modified/

referenced as a side effect of s
§  USE(s): set of variables that may be referenced as a side effect of

s before being redefined
§  DEF(s): set of variables that must be modified as a side effect of s
§  GMOD(p), GREF(p): set of global variables and formal

parameters w of p that are modified/referenced, either directly or
indirectly as a result of function call of p

47

Side-Effects
§  Async and normal method level side-effects

§  GMOD/GREF – Generalized modified/referenced side-effects
§  IMOD/IREF – Immediate modified/referenced side-effects

§  Escaping async level side-effect
§  EMOD/EREF – Escaping modified/referenced side-effects

§  Finish scope level side-effect
§  FMOD/FREF - modified/referenced side-effects for finish scope

§  Atomic/Isolated level side-effect
§  AMOD/AREF – modified/referenced side-effects for isolated

blocks

48

Side-Effects for Escaping Asyncs
§  Async-Escaping Method Level Side-Effect (EMOD, EREF)

§  Sequential calls to methods that contain async constructs which are not wrapped in finish scopes
§  GMOD and GREF sets for async-escaping methods need to be propagated in the call chain to their

immediate enclosing finish (IEF) scopes

1: void foo () {
2: async bar() // A
3: … = p.x
4: … = p.x
5: }

9: void main () {
10: p.x = …
11: finish { // F
12: foo ()
13: … = p.x
14: }
15: … = p.x
16: foo ()
17: }

GMOD (bar) = {p.x}

GMOD (A) = {p.x}

GMOD (foo) = {}

EMOD (foo) = {p.x}

EMOD (main) = {p.x}

6: void bar () {
7: p.x = …
8: }

49

Side-Effects for Finish Scopes
§  Finish Scope Level Side-Effect (FMOD, FREF)

§  Any async created within a finish scope scope must be completed before the statement after it is
executed

§  FMOD and FREF side effects comprise of the heap accesses for the asyncs within the finish scope

1: void foo () {
2: async bar() // A
3: … = p.x
4: … = p.x
5: }

9: void main () {
10: p.x = …
11: finish { // F
12: foo ()
13: … = p.x
14: }
15: … = p.x
16: foo ()
17: }

GMOD (bar) = {p.x}
GMOD (A) = {p.x}
GMOD (foo) = {}
EMOD (foo) = {p.x}

EMOD (main) = {p.x}

FMOD (F) = {p.x}
GMOD (main) = {p.x}

6: void bar () {
7: p.x = …
8: }

50

Load Elimination and Memory Model

§  Load elimination in the presence of parallel construct
§  Legality of transformation depends on memory model
§  All memory models have same semantics for data-race

free programs
§  Compiler does not know if the input program is data-race

free

51

Isolation Consistency Memory Model for HJ

§  Isolation Consistency Memory Model
§  Builds on Location Consistency Memory Model [Gao & Sarkar

‘00]
§  State of a shared location is defined using a partially ordered

multi-set (pomset) of write operations
§  A read operation sees a value that is

§  written by a most recent predecessor write
§  a write operation that is unrelated

§  Preserves control and data dependencies within a thread
§  Weaker than sequential consistency

§  Intended for application code rather than systems code

52

IC Memory Model Examples

1: A a = new A ()
2: a.f = …
3: async { … }
4: … = a.f

1: final A a = new A ()
2: a.f = …
3: finish async { a.f = … }
4: … = a.f

1: final A a = new A ()
2: a.f = …
3: async { while(...) a.f = F(a.f) }
4: … = a.f

1: final A a = new A ()
2: a.f = …
3: async { isolated if (…) a.x++ }
4: … = a.f

Case 1

Case 3 Case 4

Case 2

53

The Compiler’s task

§  Compiler must enforce programming language memory model
§  Hardware and software model may differ
§  If language model is weaker than hardware model, then compiler may

have opportunities for code optimization
§  If hardware model is weaker than language model, then compiler may

need to add synchronization operations (fences) to support language
semantics

Programmer

Multiprocessor Architecture

Programming language
 model

Compiler

Hardware memory model

54

Summary of MPIR-level Load Elimination Algorithm
§  Compute side-effects for each function call, finish scope and global

isolated level using side-effect analysis described before
§  Append pseudo-defs and pseudo-uses to fields based on side-effects

and isolation consistency memory model
§  Create heap operands for the pseudo-defs and pseudo-uses
§  Construct extended array-ssa form for the heap operands
§  Perform global value numbering to compute Definitely-Same (DS)

and Definitely-Different (DD) relations
§  Perform data flow analysis to propagate uses to defs
§  Eliminate loads if the value number is available

55

Reduction in Dynamic Field Accesses

Benchmarks # getfield
original

#getfield
after FKS
Load
elim.

#getfield
after FKS
+TRANS
Load elim.

#getfield after
PAR Load
elim.

#getfield
after PAR
+TRANS
Load elim.

Impr.
relative to
Original (%)

Impr.
Relative to
FKS

Impr.
Relative to
FKS
+TRANS

CG-S 3.89E09 3.10E09 3.03E09 2.34E09 3.92E05 99.99% 99.99% 99.99%

MG-W 1.41E04 1.15E04 1.13E04 7.96E03 6.71E03 52.55% 41.72% 40.58%

MolDyn-B 1.19E10 7.91E09 5.82E09 4.91E09 3.11E09 73.89% 60.62% 46.49%

RayTracer-B 3.08E10 2.02E10 2.02E10 1.67E10 1.38E10 55.25% 31.93% 31.82%

Montecarlo-B 1.75E09 1.54E09 1.48E09 5.84E08 9.19E08 47.38% 40.48% 37.95%

specJBB 1.19E09 1.02E09 8.95E08 6.65E08 5.78E08 51.56% 43.19% 35.43%

Decrease in dynamic counts of getfield operations of upto ~ 1000x

56

Speedup on 4 Quadcore Intel Xeon

Runtime improvement: up to 1.76× on 1 core, and 1.39× on 16 cores

0

2

4

6

8

10

12

CG-A MG-W MolDyn-B RayTracer-B Montecarlo-B GEO MEAN

Sp
ee

du
p

re
la

tiv
e

to
 1

-T
H

R
EA

D
 N

O
 L

O
A

D
 E

LI
M

FKS LOADELIM Thread 1 FKS+TRANS LOADELIM Thread 1 PAR LOADELIM Thread 1

PAR+TRANS LOADELIM Thread 1 NOLOADELIM Thread 16 FKS LOADELIM Thread 16

FKS+TRANS LOADELIM Thread 16 PAR LOADELIM Thread 16 PAR+TRANS LOADELIM Thread 16

57

Conclusions

 §  Theoretical foundations of parallel programs have historically

been defined using unstructured parallel programming
constructs such as threads and locks

§  This talk presented early experiences in the Habanero project
on identifying structured parallelism primitives that provide a
foundation for programmability, compilation and runtime

§  The benefits of structured parallelism were illustrated using
examples from program analysis and transformation

58

A Call to Arms --- creating a general compiler back-end
framework for Optimizing Parallel Programs
§  Extend LLVM IR with support for PGAS languages with explicit task

parallelism e.g.,
§  Chapel, X10
§  Habanero-C with distributed futures
§  Habanero-UPC (Rice-LBL collaboration)

§  Other source languages
§  Output from a DSL?
§  UPC (current standard doesn’t have task parallelism)
§  CAF (current standard doesn’t have task parallelism)
§  OpenMP (separate effort under way for LLVM extensions)

§  Framework will be based on formal semantic requirements for
analyzing and optimizing parallel programs Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested

in a PhD, postdoc or research scientist position
in the Habanero project, or in collaborating with us!

