
From Music III to Faust (1/2)
A journey into audio and music DSLs

Y. Orlarey, S. Letz

GRAME – Centre National de Création Musicale

Keynotes in HPC languages, Lyon, July 2th 2013

Overview
Some Music DSLs

4CED

Adagio

Algorithmic
Music
Language

AMPLE

Arctic

Autoklang

Canon

CHANT

Chuck

CLCE

CMIX

Cmusic

CMUSIC

Common
Lisp Music

Common
Music

Common
Music
Notation

Csound

CyberBand

DARMS

DCMP

DMIX

Elody

EsAC

EUTERPE

Faust

Flavors Band

FOIL

FORMES

FORMULA

Fugue

GROOVE

GUIDO

HARP

Haskore

HMSL

INV

invokator

KERN

Keynote

Kyma

LOCO

LPC

Mars

MASC

Max

MidiLisp

MidiLogo

MODE

MOM

Moxc

MSX

MUS10

MUS8

MUSCMP

MuseData

MusES

MUSIC 10

MUSIC 11

MUSIC 360

MUSIC 4B

MUSIC 4BF

MUSIC 4F
ORPHEUS

MUSIC 6

Music
Composition
Language

MUSIC
III/IV/V

MusicLogo

Music1000

MUSIC7

Musictex

MUSIGOL

MusicXML

Musixtex

NIFF

NOTELIST

Nyquist

OPAL

OpenMusic

Organum1

Outperform

PE

Patchwork

PILE

Pla

PLACOMP

PLAY1

PLAY2

PMX

POCO

POD6

POD7

PROD

Puredata

Ravel

SALIERI

SCORE

ScoreFile

SCRIPT

SIREN

SMDL

SMOKE

SSP

SSSP

ST

Supercollider

Symbolic
Composer

Digital Sound Synthesis
1957, first experiments

First experiments in digital sound synthesis in 1957 by Max
Mathews and colleagues at Bell Labs

Sounds computed on an IBM 704 at IBM headquarters in
New York and stored on a digital tape

Digital tape played back at Bell Labs in Murray Hill using a
unique 12-bits ”digital-to-sound” converter

Digital Sound Synthesis
First Tools, Music I and Music II

1957 : Music I (single triangle waveform generator, written by
M. Mathews for the IBM 704)

”In a Silver Scale” a piece by Newman Guttman written with
Music I in 1957

1958 : Music II (4 voices, 16 waveforms, written by M.
Mathews for the IBM 7094)

”Pitch Variations” a piece by Newman Guttman written with
Music II in 1958 (play)

http://www.youtube.com/watch?v=TExxv1-j42Y

Digital Sound Synthesis
First Languages, Music III/IV/V

1960 : Music III introduces the concept of Unit Generators

1963 : Music IV, a port of Music III using a macro assembler

1968 : Music V written in Fortran (inner loops of UG in
assembler)

ins 0 FM;

osc bl p9 p10 f2 d;

adn bl bl p8;

osc bl bl p7 fl d;

adn bl bl p6;

osc b2 p5 p10 f3 d;

osc bl b2 bl fl d;

out bl;

FM synthesis coded in CMusic

Csound

Originally developed by Barry Vercoe in 1985, Csound is today ”a
sound design, music synthesis and signal processing system,
providing facilities for composition and performance over a wide
range of platforms.” (see http://www.csounds.com)

instr 2

a1 oscil p4, p5, 1 ; p4=amp

out a1 ; p5=freq

endin

Example of Csound instrument

f1 0 4096 10 1 ; sine wave

;ins strt dur amp(p4) freq(p5)

i2 0 1 2000 880

i2 1.5 1 4000 440

i2 3 1 8000 220

i2 4.5 1 16000 110

i2 6 1 32000 55

e

Example of Csound score

http://www.csounds.com

Supercollider

SuperCollider (John McCarthy, 1986) is an open source
environment and programming language for real time audio
synthesis and algorithmic composition. It provides an interpreted
object-oriented language which functions as a network client to a
state of the art, realtime sound synthesis server. (see
http://supercollider.sourceforge.net/)

http://supercollider.sourceforge.net/

Max
Max (Miller Puckette, 1987), is visual programming language for
real time audio synthesis and algorithmic composition with
multimedia capabilities. It is named Max in honor of Max
Mathews. It was initially developed at IRCAM. Since 1999 Max
has been developed and commercialized by Cycling74. (see
http://cycling74.com/)

http://cycling74.com/

Puredata

Pure Data (Miller Puckette 1996) is an open source visual
programming language of the Max family. ”Pd enables musicians,
visual artists, performers, researchers, and developers to create
software graphically, without writing lines of code”. (see
http://puredata.info/)

http://puredata.info/

Elody

Elody (Fober, Letz, Orlarey, 1997) is a music composition
environment developed in Java. The heart of Elody is a visual
functional language derived from lambda-calculus. The languages
expressions are handled through visual constructors and Drag and
Drop actions allowing the user to play in realtime with the
language.

OpenMusic
OpenMusic (Agon et al. 1998) is a music composition environment
based on Common Lisp. It introduces a powerful visual syntax to
Lisp and provides composers with a large number of composition
tools and libraries.

Faust

Faust (Orlarey et al. 2002) is a programming language that
provides a purely functional approach to signal processing while
offering a high level of performance. FAUST offers a viable and
efficient alternative to C/C++ to develop audio processing
libraries, audio plug-ins or standalone applications.

ChucK

ChucK (Ge Wang, Perry Cook 2003) is a concurrent, on-the-fly,
audio programming language. It offers a powerful and flexible
programming tool for building and experimenting with complex
audio synthesis programs, and real-time interactive control. (see
http://chuck.cs.princeton.edu)

// make our patch

SinOsc s => dac;

// time -loop , in which the osc’s frequency

// is changed every 100 ms

while(true) {

100::ms => now;

Std.rand2f (30.0 , 1000.0) => s.freq;

}

http://chuck.cs.princeton.edu

Reactable

The Reactable is a tangible programmable synthesizer. It was
conceived in 2003 by Sergi Jordà, Martin Kaltenbrunner, Günter
Geiger and Marcos Alonso at the Pompeu Fabra University in
Barcelona.

From Music III to Faust (2/2)
A journey into audio and music DSLs

Y. Orlarey, S. Letz

GRAME – Centre National de Création Musicale

Keynotes in HPC languages, Lyon, July 2th 2013

1-Introduction

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is FAUST ?

FAUST stands for Functional AUdio STream:

It is a Domain-Specific Language for real-time audio signal
processing and synthesis.

It can be used to develop:
I audio effects,
I sound synthesizers
I real-time applications processing signals.

Who uses FAUST ?
I Developers of audio applications and plugins,
I Sound engineers and musical assistants
I Researchers in Computer Music

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
What is a FAUST program ?

A FAUST program describes a signal processor :

A (periodically sampled) signal is a time to samples function:
I S = N→ R

A signal processor is a signals to signals function:
I P = Sn → Sm

Everything in FAUST is a signal processor :
I + : S2 → S1 ∈ P,
I 3.14 : S0 → S1 ∈ P, . . .,

Programming in FAUST is essentially combining signal
processors :

I {: , <: :> ~ } ⊂ P× P→ P

Introduction
Example of signal processor

A digital signal processor, here a Lexicon 300, can be modeled
as a mathematical function transforming input signals into
output signals.

FAUST allows to describe both the mathematical
computation and the user interface.

Introduction
Example of signal processor

A digital signal processor, here a Lexicon 300, can be modeled
as a mathematical function transforming input signals into
output signals.

FAUST allows to describe both the mathematical
computation and the user interface.

Introduction
Example of signal processor

A digital signal processor, here a Lexicon 300, can be modeled
as a mathematical function transforming input signals into
output signals.

FAUST allows to describe both the mathematical
computation and the user interface.

Introduction
A simple FAUST program

Figure: Source code of a simple 1-voice mixer
Figure:
Resulting
application

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

Introduction
Main caracteristics

FAUST is based on several design principles:

High-level Specification language

Purely functional approach

Textual, block-diagram oriented, syntax

Efficient sample level processing

Fully compiled code (sequential or parallel)

Embeddable code (no runtime dependences, constant memory
and CPU footprint)

Easy deployment : single code multiple targets (from VST
plugins to iPhone or standalone applications)

2-Block Diagram Algebra

Block-Diagram Algebra

Programming by patching is familiar to musicians :

Block-Diagram Algebra
Today programming by patching is widely used in Visual
Programming Languages like Max/MSP:

Figure: Block-diagrams can be a mess

Block-Diagram Algebra

Faust allows structured block-diagrams

allpass_combs(8) feedbackmatrix(8)

delayfilters(...1, 8, 0.1))))fbdelaylines(8)

zita_rev_fdn(...1, 8, 0.1))))(48000)

Figure: A complex but structured block-diagram

Block-Diagram Algebra
Faust syntax is based on a block diagram algebra

5 Composition Operators

(A,B) parallel composition

(A:B) sequential composition

(A<:B) split composition

(A:>B) merge composition

(A~B) recursive composition

2 Constants

! cut

_ wire

Block-Diagram Algebra
Parallel Composition

The parallel composition (A,B) is probably the simplest one. It
places the two block-diagrams one on top of the other, without
connections.

Figure: Example of parallel composition (10,*)

Block-Diagram Algebra
Sequential Composition

The sequential composition (A : B) connects the outputs of A to
the inputs of B. A[0] is connected to [0]B, A[1] is connected to
[1]B, and so on.

Figure: Example of sequential composition ((*,/):+)

Block-Diagram Algebra
Split Composition

The split composition (A <: B) operator is used to distribute A
outputs to B inputs.

Figure: example of split composition ((10,20) <: (+,*,/))

Block-Diagram Algebra
Merge Composition

The merge composition (A :> B) is used to connect several
outputs of A to the same inputs of B.

Figure: example of merge composition ((10,20,30,40) :> *)

Block-Diagram Algebra
Recursive Composition

The recursive composition (A~B) is used to create cycles in the
block-diagram in order to express recursive computations.

Figure: example of recursive composition +(12345) ~ *(1103515245)

3-Primitive operations

Faust Primitives
Arithmetic operations

Syntax Type Description
+ S2 → S1 addition: y(t) = x1(t) + x2(t)
- S2 → S1 subtraction: y(t) = x1(t)− x2(t)
* S2 → S1 multiplication: y(t) = x1(t) ∗ x2(t)

∧ S2 → S1 power: y(t) = x1(t)x2(t)

/ S2 → S1 division: y(t) = x1(t)/x2(t)
% S2 → S1 modulo: y(t) = x1(t)%x2(t)
int S1 → S1 cast into an int signal: y(t) = (int)x(t)
float S1 → S1 cast into an float signal: y(t) = (float)x(t)

Faust Primitives
Bitwise operations

Syntax Type Description
& S2 → S1 logical AND: y(t) = x1(t)&x2(t)
| S2 → S1 logical OR: y(t) = x1(t)|x2(t)
xor S2 → S1 logical XOR: y(t) = x1(t) ∧ x2(t)
<< S2 → S1 arith. shift left: y(t) = x1(t) << x2(t)
>> S2 → S1 arith. shift right: y(t) = x1(t) >> x2(t)

Faust Primitives
Comparison operations

Syntax Type Description
< S2 → S1 less than: y(t) = x1(t) < x2(t)
<= S2 → S1 less or equal: y(t) = x1(t)⇐ x2(t)
> S2 → S1 greater than: y(t) = x1(t) > x2(t)
>= S2 → S1 greater or equal: y(t) = x1(t) >= x2(t)
== S2 → S1 equal: y(t) = x1(t) == x2(t)
!= S2 → S1 different: y(t) = x1(t)! = x2(t)

Faust Primitives
Trigonometric functions

Syntax Type Description
acos S1 → S1 arc cosine: y(t) = acosf(x(t))
asin S1 → S1 arc sine: y(t) = asinf(x(t))
atan S1 → S1 arc tangent: y(t) = atanf(x(t))
atan2 S2 → S1 arc tangent of 2 signals: y(t) = atan2f(x1(t), x2(t))
cos S1 → S1 cosine: y(t) = cosf(x(t))
sin S1 → S1 sine: y(t) = sinf(x(t))
tan S1 → S1 tangent: y(t) = tanf(x(t))

Faust Primitives
Other Math operations

Syntax Type Description
exp S1 → S1 base-e exponential: y(t) = expf(x(t))
log S1 → S1 base-e logarithm: y(t) = logf(x(t))
log10 S1 → S1 base-10 logarithm: y(t) = log10f(x(t))
pow S2 → S1 power: y(t) = powf(x1(t), x2(t))
sqrt S1 → S1 square root: y(t) = sqrtf(x(t))
abs S1 → S1 absolute value (int): y(t) = abs(x(t))

absolute value (float): y(t) = fabsf(x(t))
min S2 → S1 minimum: y(t) = min(x1(t), x2(t))
max S2 → S1 maximum: y(t) = max(x1(t), x2(t))
fmod S2 → S1 float modulo: y(t) = fmodf(x1(t), x2(t))
remainder S2 → S1 float remainder: y(t) = remainderf(x1(t), x2(t))
floor S1 → S1 largest int ≤: y(t) = floorf(x(t))
ceil S1 → S1 smallest int ≥: y(t) = ceilf(x(t))
rint S1 → S1 closest int: y(t) = rintf(x(t))

Faust Primitives
Add new ones using Foreign Functions

foreignexp

- ffunction
�� �- (

���- signature - ,
���- inclfile - ,

���- comment -)
����

�- fvariable
�� �- (

���- type - identifier - ,
���- inclfile -)

����- fconstant
�� �- (

���- type - identifier - ,
���- inclfile -)

���

�

-

Reference to external C functions, variables and constants can be
introduced using the foreign function mechanism.
example :

asinh = ffunction(float asinhf (float), <math.h>, "");

Faust Primitives
Delays and Tables

Syntax Type Description
mem S1 → S1 1-sample delay: y(t + 1) = x(t), y(0) = 0
prefix S2 → S1 1-sample delay: y(t + 1) = x2(t), y(0) = x1(0)
@ S2 → S1 fixed delay: y(t + x2(t)) = x1(t), y(t < x2(t)) = 0
rdtable S3 → S1 read-only table: y(t) = T [r(t)]
rwtable S5 → S1 read-write table: T [w(t)] = c(t); y(t) = T [r(t)]
select2 S3 → S1 select between 2 signals: T [] = {x0(t), x1(t)}; y(t) = T [s(t)]
select3 S4 → S1 select between 3 signals: T [] = {x0(t), x1(t), x2(t)}; y(t) = T [s(t)]

Faust Primitives
User Interface Primitives

Syntax Example
button(str) button("play")

checkbox(str) checkbox("mute")

vslider(str,cur,min,max,inc) vslider("vol",50,0,100,1)

hslider(str,cur,min,max,inc) hslider("vol",0.5,0,1,0.01)

nentry(str,cur,min,max,inc) nentry("freq",440,0,8000,1)

vgroup(str,block-diagram) vgroup("reverb", ...)

hgroup(str,block-diagram) hgroup("mixer", ...)

tgroup(str,block-diagram) vgroup("parametric", ...)

vbargraph(str,min,max) vbargraph("input",0,100)

hbargraph(str,min,max) hbargraph("signal",0,1.0)

4-Architectures

Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.

Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.

Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.

Faust Architecture System
Motivations

Easy deployment (one Faust code, multiple audio targets) is
an essential feature of the Faust project

This is why Faust programs say nothing about audio drivers or
GUI toolkits to be used.

There is a separation of concerns between the audio
computation itself, and its usage.

Faust Architecture System
The architecture file describes how to connect the audio computation to the external
world.

DSP code

User Interface
Module

Audio Driver Module

User Interface
Module

Audio Driver Module

DSP code

Faust Architecture System
Examples of supported architectures

Audio plugins :
I LADSPA
I DSSI
I LV2
I Max/MSP
I VST
I PD
I CSound
I Supercollider
I Pure
I Chuck
I Octave
I Flash

Audio drivers :
I Jack
I Alsa
I CoreAudio

Graphic User Interfaces :
I QT
I GTK
I iOS5

Other User Interfaces :
I OSC
I HTTPD

5-Compiler/Code Generation

FAUST Compiler
Main Phases of the compiler

Faust Program

evaluation

Block-Diagram
in Normal Form

symbolic propagation

Signal Equations

normalization

Signal Equations
in Normal Form

type inference

Typed Signals

code generation

Implementation
Code (C++)

FAUST Compiler
Four Code generation modes

scalar code generator

vector code generator
(loop separation)

parallel code
generator
(OpenMP
directives)

parallel code
generator

(Work Stealing
Scheduler)

6-Performances

Performance of the generated code
How the C++ code generated by FAUST compares with hand written C++ code ?

STK vs FAUST (CPU load)

File name STK FAUST Difference

blowBottle.dsp 3,23 2,49 -22%
blowHole.dsp 2,70 1,75 -35%

bowed.dsp 2,78 2,28 -17%
brass.dsp 10,15 2,01 -80%

clarinet.dsp 2,26 1,19 -47%
flutestk.dsp 2,16 1,13 -47%

saxophony.dsp 2,38 1,47 -38%
sitar.dsp 1,59 1,11 -30%

tibetanBowl.dsp 5,74 2,87 -50%

Overall improvement of about 41 % in favor of FAUST.

Performance of the generated code
How the C++ code generated by FAUST compares with hand written C++ code ?

STK vs FAUST (CPU load)

File name STK FAUST Difference

blowBottle.dsp 3,23 2,49 -22%
blowHole.dsp 2,70 1,75 -35%

bowed.dsp 2,78 2,28 -17%
brass.dsp 10,15 2,01 -80%

clarinet.dsp 2,26 1,19 -47%
flutestk.dsp 2,16 1,13 -47%

saxophony.dsp 2,38 1,47 -38%
sitar.dsp 1,59 1,11 -30%

tibetanBowl.dsp 5,74 2,87 -50%

Overall improvement of about 41 % in favor of FAUST.

Performance of the generated code
What improvements to expect from parallelized code ?

Sonik Cube
Audio-visual installation involving a cube of light, reacting to
sounds, immersed in an audio feedback room (Trafik/Orlarey
2006).

Performance of the generated code
What improvements to expect from parallelized code ?

Sonik Cube

8 loudspeakers

6 microphones

audio software, written in FAUST, controlling the audio
feedbacks and the sound spatialization.

Performance of the generated code
What improvements to expect from parallelized code ?

Sonik Cube
Compared performances of the various C++ code generation
strategies according to the number of cores :

1 2 3 4 5 6 7 8

0

20

40

60

80

100

120

140

160

180

Sonik Cube

Mac Pro 8, Faust 0.9.20, icc 11.1.069

omp
sch
scal
vec

performance (MB/s)

n
u

m
b

e
r

o
f

c
o

re
s

7-DocumentationPreservation

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independently of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independently of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independently of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Motivations et Principles

Binary and source code preservation of programs is not enough
: quick obsolescence of languages, systems and hardware.

We need to preserve the mathematical meaning of these
programs independently of any programming language.

The solution is to generate automatically the mathematical
description of any Faust program

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Tools provided

The easiest way to generate the complete mathematical
documentation is to call the faust2mathdoc script on a
Faust file.

This script relies on a new option of the Faust compile :
-mdoc

faust2mathdoc noise.dsp

Automatic Mathematical Documentation
Files generated by Faust2mathdoc noise.dsp

H noise-mdoc/

H cpp/

� noise.cpp

H pdf/

� noise.pdf

H src/

� math.lib

� music.lib

� noise.dsp

H svg/

� process.pdf

� process.svg

H tex/

� noise.pdf

� noise.tex

8-Resources

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FAUST Distribution on Sourceforge

http://sourceforge.net/projects/faudiostream/

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/faudiostream faust
cd faust; make; sudo make install

http://sourceforge.net/projects/faudiostream/

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
FaustWorks IDE on Sourceforge

http://sourceforge.net/projects/faudiostream/files/

FaustWorks-0.3.2.tgz/download

git clone
git://faudiostream.git.sourceforge.net/gitroot/faudiostream/FaustWorks
cd FaustWorks; qmake; make

http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download
http://sourceforge.net/projects/faudiostream/files/FaustWorks-0.3.2.tgz/download

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
Using FAUST Online Compiler

http://faust.grame.fr

No installation required
Compile to C++ as well as binary (Linux, MacOSX and Windows)

http://faust.grame.fr

Resources
FAUST Quick Reference

Figure: Faust Quick Reference, Grame

Resources
Some research papers

2004 : Syntactical and semantical aspects of Faust,
Orlarey, Y. and Fober, D. and Letz, S., in Soft Computing, vol
8(9), p623-632, Springer.

2009 : Parallelization of Audio Applications with Faust,
Orlarey, Y. and Fober, D. and Letz, S., in Proceedings of the
SMC 2009-6th Sound and Music Computing Conference,

2011 : Dependent vector types for data structuring in
multirate Faust, Jouvelot, P. and Orlarey, Y., in Computer
Languages, Systems & Structures, Elsevier

9-Acknowledgments

Acknowledgments
OS Community

Fons Adriaensen, Thomas Charbonnel, Albert Gräf, Stefan Kersten, Victor
Lazzarini, Kjetil Matheussen, Rémy Muller, Romain Michon, Stephen Sinclair,
Travis Skare, Julius Smith

Sponsors

French Ministry of Culture, Rhône-Alpes Region, City of Lyon, National Research
Agency

Partners from the Astree project (ANR 2008 CORD 003 02)

Jérôme Barthélemy (Ircam), Karim Barkati (Ircam), Alain Bonardi (Ircam),
Raffaele Ciavarella (Ircam), Pierre Jouvelot (Mines/ParisTech), Laurent Pottier
(U. Saint-Etienne)

Former Students
Tiziano Bole, Damien Cramet, Étienne Gaudrin, Matthieu Leberre, Mathieu Leroi,
Nicolas Scaringella

